
ELECTRONIC PUBLISHING, VOL. 1(1), 19–44 (APRIL 1988)

Interactively editing structured documents
RICHARD FURUTA VINCENT QUINT JACQUES ANDŔE

Department of Computer Science INRIA and the University of Grenoble INRIA/Irisa-Rennes
University of Maryland Laboratoire de Ǵenie Informatique, B. P. 68 Campus de Beaulieu
College Park, Maryland 20742 F-38402 St Martin d’Hères F-35042 Rennes Cedex
USA France France

SUMMARY
Document preparation systems that are oriented to an author’s preparation of printed
material must permit the flexible specification, modification, and reuse of the contents of the
document. Interactive document preparation systems commonly have incorporated simple
representations—an unconstrained linear list of document objects in the ‘What You See
Is What You Get’ (WYSIWYG) systems. Recent research projects have been directed at the
interactive manipulation of richer tree-oriented representations in which object relationships
are constrained through grammatical specification. The advantage of such representations
is the increased flexibility that they provide in the reusability of the document and its
components and the more powerful user commands that they permit. We report on the
experience gained from the design of two such systems. Although the two systems were
designed independently of each other, a common set of issues, representations, and techniques
has been identified. An important component of these projects has been to examine the
WYSIWYG user interface, retaining the naturalness of their user interface but eliminating
their dependencies on the physical-page representation. Aspects of the design of such systems
remain open for further research. We describe these open research problems and indicate
some of the further gains that may be achievable through investigation of these document
representations.

KEY WORDS Document preparation systems Structured documents Grammatically-defined generic docu-
ment structures User interfaces Design experience

INTRODUCTION

An important stage in the development of a document preparation system is the design
of flexible, interactive tools that aid an author in preparation of documents for publica-
tion. Although the printed page is a static, physical form, the document itself is a fluid,
changing object. From the point of view of the author, document development follows
a lifecycle, similar to the one that has been observed in the development of computer
programs. The document is first created, then modified in preparation for publication,
published, and then reused, either through re-publication in new editions or through reuse
of portions in different contexts. The initial creation of the document is a cycle of design
and refinement (writing and rewriting)—the document is specified and iteratively mod-
ified as syntactic and semantic inconsistencies are detected. Transferring the document
to a publisher initiates a new cycle of modification to the document as the document is

0894–3982/88/010019–26$13.00 Received 1 November 1987
c
1988 by John Wiley & Sons, Ltd. Revised 25 November 1987

© 1998 by University of Nottingham.

20 R. FURUTA, V. QUINT, AND J. ANDŔE

proofread and edited to conform to the publisher’s style. Publication of the document
does not necessarily suspend its development. Re-publication of a technical document
in a new edition will generally involve modification to the document’s content to re-
flect advances in the subject area. Reprinting of a document by a different publisher
frequently requires modifications to meet the differing stylistic requirements of the new
publisher. Even if the document is never re-published, portions of it may be reused in
new documents.

One goal in the design of a document preparation system is to identify a document
representation that permits the flexible reuse of the document and of its components. One
such representation is that of the document as formed from a collection of hierarchically-
related components. The relationships between components are based on the document’s
logical structure and not the physical appearance of the components on the page. For
example, the document may be described as consisting of a sequence of chapters, each
chapter consisting of a sequence of sections, each section a sequence of paragraphs fol-
lowed by subsections, and so on, until the document is described completely in terms of
its basic component objects. This separation of the document’s contents from its appear-
ance enhances the ability to reuse the document and its parts—the same specification can
be transformed into the different physical representations needed to meet specific for-
matting requirements. Consequently, such representations are insulated from changes to
the formatting requirements. Such object-based document representations were originally
associated with batch-oriented formatters and form the basis of document specification
through generic markup.1 Documents represented in such a fashion will be calledstruc-
tured documentsin this paper.

A further goal is to represent the document entirely within the framework of the
document preparation system. Documents contain not only text, but also tabular material,
mathematical notations, line drawings, pieces of programs, bitmaps, and other objects.
The document representation must permit specification of the wide variety of component
objects.

Although computers have been used in the preparation of documents for publication for
more than twenty years, developing the techniques that permit incorporation of structured
document representations into interactive systems remains a topic of active research.
In this paper, we report on common experience gained from two independent projects
directed to development of such systems. In one, a prototype system (which we will
call the ped tnt) has been defined to manipulate a document representation called the
tnt [8,9]. This prototype has been used as a testbed for research into representation and
manipulation of structured documents, but is not intended to be a production system.
The second, called Grif[10,11,12], has produced a system that is approaching production
quality. Grif has been developed in France at INRIA and the University of Grenoble.

The similarities and differences between the two designs serve to clarify the issues in
the design of interactive document processing systems that manipulate structured docu-
ments. In the subsequent sections of this paper, we will first discuss some of these issues
in general terms considering why interactive manipulation of structured documents re-

1 IBM’s GML [1,2]. originated the concept of generic markup and Reid’s Scribe[3] popularized it. These and
other early systems have been surveyed elsewhere[4]. Similar structures have also been incorporated into the
SGML[5] and ODA ISO standards[6]. These and other recent developments are discussed in a forthcoming
book that collects papers on aspects of structured document representation and use[7].

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 21

quires creation of new techniques, then we shall describe our solutions, and finally we
present some of the problems that are still open and require further research.

GENERAL ISSUES

We associate three distinct representations of a document with a document processing
system: the document model representation, the output model representation, and the dis-
play representation.2 To this point in the discussion, we have concentrated on a document
model representation which specifies thelogical structureof the document. The prototyp-
ical representation of the logical structure is the book-oriented one sketched out already.
However, it is relevant to note that other kinds of documents may also be described in the
same terms, for example letters and forms. The particular objects that are identified will
differ from one class of document to another, as will the objects’ interrelationships, but
the form of the structure that describes the the object interrelationships will remain the
same and therefore the same mechanisms can be used to specify the different document
classes.

The document model representation is transformed into the output model represen-
tation by a mapping called formatting. The output model representation describes the
document’s physical appearance. The physical appearance may be described, for exam-
ple, in terms of a two-dimensional page space, representing the position of elements
(such as individual characters) within that page space. This representation specifies the
attributes that one commonly associates with printed documents—fonts, character sizes,
line breaks, etc. The output representation is mapped to a display representation—in other
words to a form for display on a particular medium (e.g., CRT or paper). This is called
the viewing mapping.

Use of a document model that is based upon structured documents raises general
questions. These questions focus first on the structured document representation itself.
Additionally, questions arise on the means that associate the description of the document’s
physical appearance with the elements of the logical structure—in other words the means
by which the transformation from document model to output model is specified. We will
present these general issues in the remainder of this section, describing the solutions our
systems incorporate later in the paper.3

STRUCTURED DOCUMENTS

The simplest document model represents a document as a sequence of printable charac-
ters interspersed with control sequences that modify the position or graphic aspect of the
following characters. By contrast, the structured document is a high-level representation
that is based on the logical organization of a document, but not directly on its graphical
form. The simple model is the basis of many popular and widely used document prepa-
ration systems—for example theWYSIWYG editors. However, the structured document
representation permits more generalized manipulations of the document.

2 These classifications are based on those defined by Shaw[4].
3 We note in passing that the solutions we propose here are not limited only to application in our systems. Such
techniques are likely to be of use when applied to any representation incorporating a similar document model
representation—i.e., one that is based on grammatically-specified, publication-oriented, structured documents.
A notable member of this class of representations is that defined by the SGML standard.

22 R. FURUTA, V. QUINT, AND J. ANDŔE

In addition to enhancing the reusability of the document and its components, struc-
tured document representations allow the development of tools that perform auxiliary
manipulations on the document and features that assist the author of the document. It is
not only possible to print the document as if it were represented in the simple model, it
is also possible to build tools that automatically extract components (abstract, keywords,
or title, for example) for storage in an information retrieval system, or tools that translate
the document into different formalisms, perhaps in support of document interchange.

Another advantage of this representation is that the editing system may present the
user with powerful commands. According to the structure, the system may number (and
renumber when necessary) all elements that need to be numbered, it may compute and
update cross-references, and it may establish a table of contents or an index. All these
features are already available with high-level batch formatters such as Scribe or LATEX,
as they use a similar level of abstraction for representing documents. The novelty is that
these features are interactive and thus allow even greater functionality. For example, the
user may use the cross-references, the index, or the table of contents for moving quickly
from one point in the document to another. The table of contents may also be used for
editing the document in outline form.

The components of a structured document representation

The structured document model representation can be viewed as being object-based, with
higher-level objects formed by composing more primitive objects. In describing the struc-
tured document representation in more detail, it is useful to make an informal distinction
between the representation’sprimary structureand itssecondary structures. The primary
structure is the predominating structure; the relationships that define the form of com-
position of primitive objects into higher-level objects. The primary structure described
in this paper is tree-based. The secondary structures represent additional relationships
among the document’s objects; relationships that do not directly affect the composition
of higher-level document objects. Common secondary relationships are those expressed
by cross-references, and those expressed by the relationship between a floating object
(such as a figure or perhaps a footnote) and the reference to that object.

More precisely, the primary structure used here is a forest of trees. Some elements,
figures and notes for example, may be put in different places in a document when the
document is formatted. A note may be laid-out at the bottom of the page where it is
called for the first time, or at the end of the chapter, or even at the end of the book,
with all other notes (this is often the case for bibliographic notes). A note may be called
from several points in a document. Such elements do not have a fixed logical position
in the document tree and can be related to several nodes of the tree. Consequently, such
elements are represented as aseparatetree from the main body of the document and the
separate trees in the forest are related to one another with secondary relationships.

A further issue in the definition of the components that make up a structured document
is the identity of the atomic object or objects—the most primitive objects. Two relevant
choices to be made in design are the size of the object represented as atomic and whether
there is a single class of such objects or multiple classes. In this paper’s document model,
the atomic objects are relatively large in size and heterogeneous in form. For example,
the atomic object is perhaps a string of text (and not the individual character), is perhaps
a line drawing (and not an individual element of that line drawing), and so on. The

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 23

reason for this is to encapsulate non-tree structures (or variant tree structures) into the
atomic objects, thereby permitting the primary structure to be the relatively simple, well
understood, and easy to manipulate tree structure.4

The encapsulation of structures into an atomic object may be for one of two reasons.
In some cases, such as strings of text, the tree structure is more complex than the most
natural representation for the object. In other cases, such as tabular material, which
is most naturally represented as a matrix, the natural representation does not translate
straightforwardly into a tree. Similarly, a bitmap is not straightforwardly represented as a
tree. Variant tree structures, differing from those used to represent the primary structure
and encapsulated within a leaf of the general tree structure, may be convenient to use for
mathematical equations or line drawings.5 WYSIWYG-like systems have also incorporated
such collections of atomic objects, imbedding them in a linear structure rather than in
the tree structure we use for structured documents; Xerox’s Viewpoint[13,14], Interleaf’s
Publishing System[15], and the Apple Macintosh’s MacWrite[16] are examples.

Grammatical definition of structure

The structured document representation (indeed, any document model representation)
may be considered at two different levels: specific and generic. The distinction may be
seen when considering document classes. A document class serves to group documents
with similar structures. Examples of classes include letters, reports, manuals, and books.
The generic logical structure represents the model for all documents in a given class.
The specific logical structure represents an instance of a document in a class.

The atomic objects defined by a system are likely to be common across all classes of
documents. In other words, the same basic components are likely to be found in books,
letters, and so on. What will distinguish one class of documents from another is their
respective primary structures—the identity of the higher-level objects and the manner in
which they are composed.

An issue is whether the object interrelationships should be constrained or uncon-
strained. If the interrelationships are unconstrained, any set of objects may be composed
into a higher-level object. Such a design is attractive because it eliminates the need to
verify the correctness of the composition.

Our systems, however, incorporate a grammatical specification of the object interrela-
tionships in the generic logical document. An expense of this design decision is that it
becomes more complicated to design a simple to use but powerful user interface because
of the provisions that must be made to allow the system’s user to determine what object
relationships are permissible during specification of the document. Indeed, it is some-
times useful (or even required) to guide the system’s user through the creation of the
structure, thereby ensuring that the constraints on relationships are maintained. However,
the added complexity of system design is offset by the increased flexibility in commands
that can be based on information gained from the grammatical specification.

The key point is that a grammatical specification allows the system to incorporate an

4 It is relevant to emphasize that if such structures were not encapsulated into the leaf objects, the primary
structure would be required to be rich enough to permit representation of all desired relationships, perhaps a
rooted directed acyclic graph structure.
5 Grif does not define variant tree structures, representing such objects with the standard tree. Theped tnt ,
however, does use a variant tree to represent mathematical material.

24 R. FURUTA, V. QUINT, AND J. ANDŔE

‘understanding’ of the components of the structure. The grammatically-defined structure
allows the designer of the document class to specify whether or not a particular object may
be contained within another. Additionally, the designer can specify that certain document
elements are to be optional and others are to be required. A system can enforce this aspect
of the design, insuring that required elements are provided by the author.

Since a grammatically-based specification provides a convenient and well-defined
framework, extra-grammatical mechanisms also can take advantage of this framework.
As noted before, an advantage of the structured document representation is that system-
computed information may be associated with elements of the document—perhaps num-
bers or other identifying information. The specifications of how these values are to be
computed also may be associated with the grammar elements, thereby allowing the flex-
ible definition and modification of these facilities as well. Finally, as we will discuss
later, the elements in the grammatically-based specification provide a base for attaching
the information that guides the translation from logical structure to physical appearance.

A special case of these mechanisms is that which permits special representations of
the document—perhaps showing only a selected subset of the document’s objects, or
perhaps presenting the same objects in differing representations.

Aspects of a user interface

WYSIWYG editor/formatters present the interactive representation of the document as iden-
tical to the printed representation. In other words, the form appearing on the screen has
all the fonts, sizes, and spacings of the form that is printed on paper. Editing changes
are performed directly on this representation of the output. The resulting user interface
is natural-seeming as the display of the document and the manipulations that take place
are similar to those that would be carried out for paper documents. Such naturalness is
a goal for the user interface of any interactive system.

It is important to distinguish between the goals of systems such as those described
in this paper and those of theWYSIWYG editor/formatters, as such distinctions affect the
characteristics of the user interface. Indeed, theWYSIWYG user interface, while natural
in form, limits the document representations that can be used. The characteristics of a
WYSIWYG user-interface can be further subdivided into three categories:

1. Direct manipulationstyle of interaction[17]: the user’s operations are seemingly
performed directly on the displayed representation and are expressed in terms of
that representation, perhaps through a pointing device such as the mouse.

2. Exact-representationof the printed output: the displayed representation is the same
as the printed representation.

3. Immediate recognizabilityof document components from their appearance on the
display.

It is the exact-representation characteristic that is most in conflict with a structured
document representation.

Exact-representation restricts the power of the algorithms that may be incorporated
into a system. The need in an exact-representation system is to use algorithms whose
actions over the document are as limited and as predictable as possible. In part this is a
technology-imposed limit—such algorithms must be fast and must operate incrementally
in order to permit the editor/formatter to be responsive to the user’s commands. But

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 25

in addition there are psychological advantages to limiting the scope of change in a
document to an area that is closely associated with the point of change. This restriction
conflicts with the need of the algorithms that are intended to produce high-quality output
representations, for example those that have been associated with TEX. These algorithms
attempt to examine asmuchof the document as possible in determining how to display
the document’s objects, and changes to the display may range over wide areas of the
document, and are not necessarily directly associated with the point of change.

Our systems’ user interfaces relax the requirement for exact-representation but retain a
direct manipulation interaction style and provide immediate object recognizability when
appropriate. The display shown to the system’s user is not intended to reflect the final
form of the document.6 Indeed, there is no single exact-representation of a structured
document—for example, many different layouts may be generated from the same log-
ical structure. Thus when editing a structured document, the displayed representation
is intended primarily to reflect the logical structure of the document and to permit the
system’s user to see the results of commands as they are entered. Such representations
can be specialized to the editing task—object boundaries may be represented explicitly,
pagination may not be represented, material located in separate trees of the structure may
be displayed in separate windows, etc. When printing, the system may use sophisticated
algorithms for setting the text into lines with hyphenation, kerning and ligatures or for
building pages. Such processing can be done separately from the editor and consequently
the interactive performance of the algorithms used is not critical.

A further issue in the design of the user interface is the mechanisms provided to allow
use of a variety of leaf objects. As mentioned previously, such objects can range widely
both in the components they are built from and also in the structure they represent. For
example, components may range from textual material to line drawing-oriented material.
Structures may range from linear structures, as in a string of text, to a two-dimensional
matrix, as in a table, and to a tree structure, as in a mathematical equation. Clearly the
design of the enclosing structure interacts with the design of the leaf objects’ structure(s),
and with the components included in the leaf objects. If separate editors are associated
with each of the kinds of leaf objects, it is necessary to design carefully to insure that
the resulting user interfaces are compatible with each other. Similarly, it is important that
the commands provided to edit the leaf objects be compatible with the commands that
edit the structure, itself. A question that we will explore further later in this paper is the
degree to which the boundaries between the structure editor and the leaf object editors
can be removed in the user interface design (although the separate editors would still
exist in the underlying implementation).

In understanding the issues in design of user interfaces that permit direct manipulation
of structured documents, it is worth considering the similarities and differences between
documents and computer programs. Programs are documents of a particular type. Like the
structured documents considered here, programs are highly structured and grammatically
defined, and therefore specific tools have been created for manipulating them efficiently—
for example, programming environments have incorporated syntax-directed editors. We
must consider why we do not simply apply these well-understood syntax-directed editors
to documents in general.

6 Grif allows definition of a display that resembles the final form, but this feature is usually used only with
a completed document, just for checking before printing.

26 R. FURUTA, V. QUINT, AND J. ANDŔE

Programs are a very special class of documents. Programs are defined syntactically and
semantically with a great deal more precision and rigidity than are printed documents.
On the other hand, printed documents are typographically much more complex than are
programs.

The structure relating programming language constructs is homogeneous, and tree-
structured but we find it convenient to define heterogeneous structures to describe docu-
ments. There does not seem to be the same need in the programming language domain
for the variety of object relationships commonly found in the document domain.

It is perhaps not surprising that tools, such as syntax-directed editors, with a strong
orientation to the grammatically defined object relationships would more naturally ma-
nipulate programs than documents. Grammatical specifications have been applied to doc-
uments primarily as a means ofdescribingthe relationships of their components. They
serve as the means ofdefiningthose relationships in programming languages.

Converting from logical structure to physical appearance

A critical component of a document processing system, particularly one that is based
around structured documents, is the means by which the mapping to a displayed form
is specified (either paper or CRT). In the context of structured documents, such speci-
fications often are associated with the individual grammar elements, indicating in some
fashion how the associated objects are to be displayed. One possibility is to associate
physically-oriented attributes with the elements (for example, changes to the margins,
vertical spacing separating the associated object from its neighbors, etc.), where the val-
ues specify changes to global variables. Another is to associate action routines with the
elements, computationally specifying changes to the global variables.

A different approach is to specify the document’s layout explicitly using a separate
language (perhaps expressed as an interactive tool). This technique more closely resem-
bles those physical layout techniques in which a page template is prepared to indicate
where material is to be placed.

Specifying the physical appearance of the elements of the document is not the only
aspect of the mapping from the logical representation. The mapping may not be one-to-
one—certain objects may be suppressed on the display or other elements may be added
to the display. As an example of object suppression, consider the formation of a table
of contents in which only the section headers are retained. As a second example, Grif
permits filtering of the objects in the logical representation, allowing specification of
parallel versions of a document in different languages. The mapping to the display may
show perhaps only one of the versions or it may present them all. As an example of object
generation, consider the addition of header material to particular objects, for example the
string ‘Abstract’ before the text of a document’s abstract.

Interactive manipulation of structured documents

We will now turn our attention to the specific features implemented in Grif and in the
ped tnt . The two systems share similar document models. To begin the discussion on
the systems’ specifics, we will first describe the two models, discussing the motivation
for the differences that do exist between the two. We will also inspect Grif’s specification
of the physical appearance of components in the document’s logical structure—in other

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 27

words, the specification of the mapping from document model representation to output
model representation. Finally, we will turn our attention to user interface issues. Grif’s
user interface is more highly developed than is theped tnt ’s and provides a good
illustration of what can be presented to the user. Theped tnt , on the other hand,
has served as a testbed for techniques that allow the direct manipulation user interface
paradigm to be applied to the structure of the document and not limited to acting within
the bounds of a particular document object. We will, therefore, concentrate on describing
Grif’s user interface and then turn to a discussion of theped tnt ’s extensions and their
relevance to such interfaces.

Definition of document structure

The structures incorporated by Grif and by theped tnt are based on a forest of ordered
trees, where each tree represents a differentstreamof the document, as discussed earlier.

Each node in the tree is associated with a document object, and the relationship between
the objects is specified grammatically (these specifications will be discussed later in this
section). The objects located at the leaves of the ordered tree are relatively large in
size, for example strings of text. In both designs, the leaf objects are heterogeneous in
form. Grif defines four types of leaves: text (a character string, in a given alphabet, for
example latin, greek, or cyrillic), picture (a rectangular bit-map, one bit per pixel), graphic
(a geometric shape, for example a vector, a rectangle, or a circle), and math symbol (a
character that can be stretched such as a surd, ‘

p
’, an integral symbol, parentheses,

braces, and arrows).
In addition to the tree relationships, Grif definesreferences. A reference is a bidirec-

tional link between two nodes of a same tree or of two different trees. One of these two
nodes is a node of a special type (reference) and is a leaf in its tree. These reference
nodes are used for representing cross references. The link is bidirectional because it can
be used to find the referenced node from the reference and from a referenced node to
find all its references.

The Grif tree structure is used to represent the document’s structure, to represent
mathematical equations, and as an interim measure to represent tabular material. The
implemented representation of equations iseqn -like in structure—representing the inter-
relationships of the graphical elements but not necessarily the mathematical meaning of
the equation.7 The equation’s structure and displayed representation are specified using
the same mechanisms that are used to specify the structure of the document in general.
The table representation is either row-major or column-major in the current design, al-
though extensions to the semantics of the references are being considered to more closely
model the two-dimensional matrix structure of tables.

The relationships among Grif’s document objects are described using a ‘structure
schema’, which resembles a Pascal record in syntax. This structure schema used to de-
scribe the document’s generic structure specifies sequences of document objects (delim-
ited by thebegin andend keywords), where each object may itself be a simple object,
a document object repeated one or more times (specified with thelist of keyword),
or a selection of one of a collection of document objects (specified with thecase of

7 This statement is actually an oversimplification. Since Grif’s equations are defined by structure schemas,
alternate representations could be defined that more closely resembled the equation’s mathematical meaning.

28 R. FURUTA, V. QUINT, AND J. ANDŔE

keyword). Grif’s display of the document is driven by a ‘presentation model’, which pro-
vides a description of how the process of displaying a particular object is to modify the
values associated with global appearance-related attributes (e.g., the width of the display
area, etc.). In other words, the presentation model defines the spatial relationship between
a box representing the document object that is being displayed and the enclosing and
adjacent boxes representing that object’s parent and siblings in the tree that represents the
document. The presentation model also resembles the Pascal record and will be discussed
in more detail later. Further details also will be given of Grif’s user interface and of the
syntax of the structure schema later in the paper.

The grammar must provide constructs for flexibility. It must allow the user to choose
the type of certain elements either among a limited list of types or without any limit. But
flexibility may be improved in the editor itself, according to the way it uses the grammar.
Grif considers that the generic logical structure described by the grammar is to used to
suggestto the user the type of the elements that are to be created in each context, not to
require the creation of those elements. Thus each of the grammar-specified elements may
be treated as optional by the system’s user. When the grammar specifies that a report
contains an abstract, the editor generates an abstract automatically as soon as the user
creates a report, but it also allows the user to delete this abstract at any time. However, if
a document must strictly conform to its grammar, a command allows the user to generate
all elements defined by the grammar for a selected part of (or the whole) document.

As in Grif’s logical document representation, thetnt is based on an ordered tree
(called thestrict tree). Three types of leaves have been defined in theped tnt : the
text-block (a string of text), the table-block (a two-dimensional matrix representing the
structure of the table), and the equation-block (a tree, but of a different form than the
strict tree that encloses the equation). As may be seen from this list, the leaves themselves
possess a structure and are defined to terminate either inatomsor in transition nodesor
in both. An atom is an actual terminating point in thetnt . The transition node serves as
the root of another instance of the enclosing strict tree. This distinction is made primarily
for tables—a new instance of the strict tree is associated with each of the entries in a ta-
ble, thereby allowing specification of contents. A special form of character that stretches
to fill the given space is provided in the equation-blocks—this corresponds to the Grif
math symbol but is encapsulated within thetnt equation-block and not a separate kind
of leaf.

The ped tnt is a prototype system and implements a subset of the document model,
manipulating a singletnt . The document model, however, represents the document as
a forest of tnt s, associated with one another throughlinks, which resemble the Grif
references in intent. Links originate in a contiguous range of leaf nodes in sometnt ,
and terminate at the root of anothertnt . Any number ofvisible reference pointsmay be
associated with a link and placed within the origination range of the link. These points
serve as atoms within thetnt and are meant to expand to be a string that identifies the
targettnt when the originatingtnt is displayed.

The ped tnt user interface is driven by specifications written in a context-free gram-
mar whose syntax is slightly modified from the BNF. The grammar’s syntax has been
augmented by addition of operators that signify selection of components, and that sig-
nify repetition of the component. Restrictions on the form of the grammar have also
been included to simplifyped tnt ’s processing. In addition, the terminal symbols have
been further separated into user-defined terminals (whose value is to be provided by

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 29

the user) and system-defined terminals (whose value is to be computed by the system).
Unlike Grif’s specification, elements identified in the grammarmustbe included in the
document and cannot be omitted. The form of the grammar is currently being modified
to permit specification of optional material.

The primary difference in design between Grif’s logical representation and thetnt is
the presence of variant tree structures in thetnt ’s equation-block. Theped tnt incor-
porates a separate editor for each type of leaf node, specialized for the object represented
by that leaf node. Grif, on the other hand, tries to use a homogeneous representation
whenever possible, using its standard tree and tree manipulation commands for math-
ematical material. The trade-off is that theped tnt approach permits incorporation of
manipulation operations specialized for a particular leaf object but requires development
and maintenance of a separate editor for the object.

Mapping from logical structure to physical appearance

Thus far the emphasis has been put on the logical structure, but when a document is
printed or displayed, a layout (or graphical) structure is needed. In this section, we will
consider the mechanisms provided by Grif for describing this layout structure and for
specifying the translation from logical structure to layout structure[18].

Like the logical structure, the layout structure may be considered at two different levels.
There is a generic level, which represents the model for all documents in a given class,
and a specific level, which represents an instance of a document in a class.

At the generic level, a set of rules, called presentation rules, define the layout and the
physical appearance of all types of elements specified in the logical generic structure.
For the class ‘report’, for instance, these rules indicate that the title must be set in large
characters, centered in the page and placed at one inch from the top. Rules may also
indicate that paragraphs are set with the body font and size defined in the surrounding
environment: in other words, that they inherit some presentation parameters from their
parent in the logical structure. Thus, if presentation rules state that a footnote is displayed
in eight point size type and that the content of a section is displayed in eleven point type,
paragraphs in a footnote are displayed in smaller characters than paragraphs in the main
text, even if the same type of paragraph is used in both cases.

In order to achieve the integration of all document components, the same kind of
presentation rules should be associated with textual elements (for example, paragraphs,
headings, and title) and with other types of elements (such as a cell or a row in a table,
or an exponent or a denominator in a mathematical formula). It is then not possible to
use traditional typographical attributes in presentation rules, as the notions of margins or
line spacing or indentation have no meaning within a formula or a table. In Grif a general
presentation model has been defined. It allows the user to describe in a uniform way the
layout of many types of components: text as well as formulæ, tables or graphics. It is
based on the concept of abox. The box is the (normally invisible) rectangle that delimits
an element on the screen or on the paper. A box is associated with each element in the
specific logical structure of a document, and presentation rules define how this box must
be built by the editor.

The presentation rules define the box’s position, its dimensions, and the way to display
its content. Position and dimensions may be defined relatively to the other boxes—for
example, the box associated with the logical element ‘title’ may have a set of presentation

30 R. FURUTA, V. QUINT, AND J. ANDŔE

rules for specifying its width (for example 80% of the width of its parent) its horizontal
position (centered within the box of its parent) and its vertical position (one inch from
the top of the box of its parent). The same kind of rules may be used for defining the
position of a numerator within a fraction or a cell within the column of a table.

Other rules define the way to display the contents of a box: the font and the layout of
the content. There are rules for specifying the font and its attributes (e.g., font family,
size, boldness, and italics) and these attributes may be inherited. There are other rules for
specifying the way to lay out the elements contained within the box. These elements may
be placed according to their own rules (like the title within the report, or the denominator
within the fraction), or according to a rule associated with the box of their parent. This
latter case is used for example for paragraphs, where characters and structured elements
(formulæ for example) are placed each to the right of the previous one until the right limit
of the box is reached (a new line will be created when the limit is reached). The display
of lines in the environment is defined by additional rules, for example rules specifying
the inter-line spacing, the indentation of the first line in the element (as in a paragraph),
and the relative indentation of the remaining lines in the element.

Presentation rules are also used to generate new elements, called presentation elements,
according to the logical structure of the document. These rules are used for generating
numbers (e.g., section number, chapter number, formula number, or note number) or for
adding short text strings, like ‘Abstract’ or ‘Appendix’, which make the logical structure
more evident to the reader. Instead of short text it is also possible to add graphic elements:
the bar within a fraction (a horizontal line), a box drawn around a cell in a table, or a
hair-line after a title, for example.

Presentation rules are grouped into ‘presentation models’. The Grif editor needs a
presentation model to display a document. A presentation model is associated with a
document class and defines the way to display all the types of elements defined in that
class. Several presentation models may be associated with the same class, allowing the
documents to be shown in different ways. The user may choose a presentation model
according to his/her taste or to the work he/she wants to carry out on the document. When
creating a new document from scratch, a presentation model that shows the structure
explicitly is useful. Such a presentation model may augment the display with additional
information, for example the type of the elements it creates, in order to better help the
user’s task. On the contrary, when reading an existing document, it may be easier to use a
presentation model that shows the document as it would appear if printed. It is important
to note that the system’s user may switch between the defined presentation models at
will (or may use several simultaneously). It is possible to use the editor as aWYSIWYG

system, by defining an appropriate presentation model that is used both for editing and
printing. But when structural modifications are being made, another presentation model
may be chosen.

In each presentation model it is possible to define several views that will be displayed
during the editing of different aspects of the document. In a presentation model, there
are rules for defining which elements will be visible in each view. Visibility may depend
on the type of the element and/or on its hierarchical level. Thus it is possible to specify
a view (called table of contents) that displays all the section headings that are located
above a certain level, suppressing the rest of the document. It is also possible to specify
a view that displays all mathematical formulæ, whatever their level in the document
structure. For a class of bilingual documents one can define a global view displaying all

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 31

elements, an English view and a foreign view, each of which displays only elements in
one language.

When editing, the user is free to open or close any view defined in the presentation
model in use. The user is also able to modify some of the presentation parameters for a
given element, changing the specific presentation of the element, for example, its position,
dimension, font, body size, justification, line spacing, and so on. Each view is displayed
in a different window and may be edited in a uniform way. It is, for instance, possible to
create an outline of a new document just by using the table of contents view, and then
to type the text in the global view. Even then, it is possible to go back to the table of
contents for creating a new section, or moving to another part of the document or permute
two sections. Any action in one view is immediately reflected in the other existing views
where it is visible.

THE GRIF USER INTERFACE

We have presented the general mechanisms that Grif uses in specifying the structure of
different classes of documents (the structure schema) and the mapping from that logical
representation of the document to a physical presentation of the document (the presenta-
tion model). In this section, we will examine the ways in which these specifications are
incorporated into an interactive system. We will examine the Grif user interface through
a series of examples.

Figure 1shows two different documents belonging to the same class and edited with
the same presentation model. For each document only one view is open, the Global view.
Window B (at the bottom left corner) displays an empty document, just after the user has
created it. The editor has generated the elements defined by the generic logical structure,
which specifies that the body and the appendices contain at least two sections. Of course,
the user is free to delete any element created by the editor. Window A (above and to
the right of Window B) contains a second document that has been developed from the
starting point shown in Window B.

The grey rectangles in the windows represent empty elements. In Window B, the user
has selected with the mouse the first (and presently only) paragraph of section 1, which
is now displayed in dark grey. He/she has then clicked the first entry of the permanent
menu, located at the top of the screen (‘Create Within’ the selected element), and the
system displays a pop-up menu for selecting the type of the element to be created as a
paragraph. This menu is built following the generic logical structure.

The permanent menu contains eight entries—the last four entries are constant and the
first four entries depend on the current selection, allowing the creation of new elements.
When the current selection is empty, new elements can be created within the selection
(as in this example). In any case, elements can also follow the current selection and the
permanent menu indicates that such elements can be created at a number of different
levels (in the example, a paragraph at the same level, a sequence of subsections at the
next upper level, or a section at the second upper level). Creation commands are flagged
with the ‘* ’ in the menu.

Window A displays a document that has already been edited. The user has deleted the
‘Affiliation’ element and has created an additional author. The abstract is not yet written,
but the heading and some of the contents of section 1 have been specified.

This presentation model has been designed for creating a new document or for updating

32 R. FURUTA, V. QUINT, AND J. ANDŔE

Figure 1. The global view of two different documents

an existing one. Most elements are introduced by a short text string indicating their type,
there is no pagination, no justification and the text is printed in a large, readable font.
The line length is not fixed, and depends on the window width.

In Figure 2, Window B has been closed, and two additional views have been opened
for the document of window A (‘Table of contents’ and ‘Notes’). As the presentation
model is not paginated, ‘footnotes’ are shown in a different view, Window C in this
figure.

The user has selected the heading of first section, by clicking it with the mouse. It is
now displayed in reverse video in all views where it is visible. The type of the selected
element(s) is displayed in the MSG area of the Grif dialogue window, on top of the
screen.

As some elements already exist after the selected element, the variable part of the
permanent menu allows selection of the next elements at different levels (first paragraph
of introduction, next section, or the appendixes). This allows the user to move quickly
across the document. The views are another way to move across the document. Clicking
in the table of contents selects a new element, which is then displayed in all views where
it is visible—the Global view will display the beginning of the selected section.

The user wants to create a new element and has clicked the entry INSERT in the
permanent menu. As a result a pop-up menu is displayed allowing choice of the type and

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 33

Figure 2. Three views of the document

position of the element that is to be created. The choices here are to create a new section
before the introduction, a new paragraph after the (empty) paragraph of the abstract or a
new paragraph before the first paragraph of the introduction.

The constant entries of the permanent menu are used for activating the generic com-
mands (Insert, Cut, Paste, Copy), which act on the selected part of the document, whether
it is a structured part or not. Moving (Cut and Paste) a character string is performed ex-
actly in the same manner as moving a section, for example.

In Figure 3, the user has closed the Table of contents and Notes windows and has
changed the size of Window A. The layout has been automatically modified, taking into
account the new window size, as specified in the presentation model. The user has then
created a table and put some structured and unstructured elements in the cells. The cursor
is now at the end of the equation in the table and the user has clicked the first entry
in the permanent menu, for creating a new mathematical Construct in the equation. The
pop-up menu displays all possible constructs, as specified in the generic logical structure
for formulæ (Figure 5 will give more details on mathematical formulæ specification).
The user may then choose the construct to be appended to the formula.

Although the screen contains a number of (permanent and pop-up) menus, the user is
free to use the mouse and click on the screen, or to use the keyboard. There is a function
key associated with each entry of the permanent and pop-up menus. The numbers in the
pop-up menus represent the number of the function key associated with each entry.

34 R. FURUTA, V. QUINT, AND J. ANDŔE

Figure 3. Continuing the specification of the document

Finally, in Figure 4the user continues to work on the same document, but has invoked
a different presentation model, which shows the final output as it would be printed on
a laser printer. Only the presentation model has been changed—none of the document
specification has been altered. This presentation model specifies pages of fixed width and
height. The presentation model also specifies that notes are displayed as page footers,
and not in a different view. Window A displays the first page of the document.

Two additional windows have been opened, one for the Table of contents view, and
one for the Formulæ view. The formula may be edited in either the Formulæ view or in
the Global view. Switching between views is carried out by moving the mouse. Similarly,
the title and section headings can be edited in the Table of contents view or in the Global
view. If the user exchanges the headings of two sections in the Table of contents view,
the corresponding section body will be moved as well.

A Search menu has also been selected. The system can search for text, like an ordinary
text editor, for mathematical symbols (for example the integral symbol, the root symbol,
or the sum symbol that appear in the formula), for graphic elements (line, rectangle,
circle, etc.), for elements of a given type, for elements having a given logical attribute,
for all cross-references that refer to the selected element, or, if a reference is selected,
for the element that it points at. For example, if equation (1) is selected (in total or in
part), clicking the Reference entry of the Search menu will select all references to that
equation, one after the other (for example, there is a reference to the equation in the
paragraph that precedes it).

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 35

Figure 4. Document presentation resembling printed output, and additional views

0

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1
2n

F(x) = 1

F(x) =

F(x) =

y

y

y

0

0

0

Figure 5. Editing mathematical formulæ

36 R. FURUTA, V. QUINT, AND J. ANDŔE

Figure 5 shows the steps in editing a formula in Grif. As the formula is described
using Grif’s tree, the generic logical structure used to define the formula is described
in the structure schema and the display of the formula is specified by the presentation
model. In this presentation model, creation of an empty formula results in a small grey
rectangle. The user has typed ‘F(x) = ’, resulting in the top picture in the figure. Next,
a fraction is created, resulting in the next picture. The dark rectangle indicates where
typed characters will be placed. The user then types ‘1’, clicks the ‘Denominator’ entry
in the permanent menu (picture 3), and types ‘2n ’ (picture 4). Specification continues in
a similar fashion until the complete formula is displayed.

The syntax of Grif’s structure schema and presentation model

Having seen Grif’s user interface, let us return briefly to the Pascal record-like syntax
of the structure schema and of the presentation model.Figure 6shows a document of a
different class from the earlier examples, called a bilingual document.Figure 7shows the
complete structure schema that corresponds to this class. Note that parallel versions of
the structure’s leaf objects are specified—one flagged as being in the English language
and the other in the French language. The document’s author would enter both versions.

Figure 6. A bilingual document

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 37

STRUCTURE Bilingual; { class name }

DEFPRES BilingualP; { default presentation model }

ATTR { logical attributes definition }

 Language = (French, English);

STRUCT { logical structure definition }

 Bilingual =

 BEGIN

 Title = BEGIN

 French_title = TEXT WITH Language=French;

 English_title = TEXT WITH Language=English;

 END;

 Authors = LIST OF (Author=TEXT);

 Abstract = BEGIN

 French_abstract = TEXT WITH Language=French;

 English_abstract = TEXT WITH Language=English;

 END;

 Body = LIST OF (Bilingual_parag =

 BEGIN

 French_parag = TEXT WITH Language=French;

 English_parag = TEXT WITH Language=English;

 END);

 END;

END

Figure 7. The structure schema for the bilingual document class

DEFAULT { default presentation rules. These rules are applied to all

 elements, except when the corresponding rule is specified for

 the type of the element }

 BEGIN

 HorizRef : * . Top; { horizontal base line of the box }

 VertRef : * . Left; { vertical base line of the box }

 Width : Enclosing . Width; { box width }

 Height : Enclosed . Height; { box height }

 VertPos : Top = Previous . Bottom; { vertical position of the box }

 HorizPos : Left = Previous . Left; { horizontal position of the box }

 Justify : Enclosing =; { justification of the contents }

 LineSpacing : Enclosing =; { line spacing of the contents }

 Break: Yes; { page break allowed within box }

 Visibility: Enclosing =; { box visibility level }

 Font : Enclosing =; { font family: Times, Helvetica... }

 Style : Enclosing =; { font style: roman, bold, italics }

 Size : Enclosing =; { character size}

 Indent : Enclosing =; { first line indent in paragraphs }

 END;

Figure 8. Default presentation rules for the bilingual paragraph

38 R. FURUTA, V. QUINT, AND J. ANDŔE

RULES { presentation rules for the types defined in the generic structure }

 Bilingual_parag :

 BEGIN

 VertPos : Top = Previous . Bottom + 0.5;

 HorizPos ; Left = Enclosing . Left;

 Break : No;

 END;

 French_parag :

 BEGIN

 Width : Enclosing . Width * 48%;

 VertPos : Top = Enclosing . Left;

 HorizPos : Left = Enclosing . Left;

 Line (Left);

 IN French_view

 Width : Enclosing . Width;

 END;

 English_parag :

 BEGIN

 Width : Enclosing . Width * 48%;

 VertPos : Top Encloding . Top;

 HorizPos : Right = Enclosing . Right;

 Line (Left);

 IN English_view

 Width : Enclosing . Width;

 END;

Figure 9. The bilingual paragraph

ATTRIBUTES { presentation rules for logical attributes }

 Language = English :

 BEGIN

 Font: Times;

 IN French_view

 Visibility: 0;

 END;

 Language = French :

 BEGIN

 Font: Helvetica;

 IN English_view

 Visibility: 0;

 END;

Figure 10. Attributes associated with the structure schema

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 39

The presentation model defines three different views: one bilingual, one English, and
one French. Only two have been opened here. The pop-up menu shows the commands
for managing documents and views.

Figures 8,9, and10 show portions of the presentation model representation. The defi-
nition begins with association of default presentation rules with the elements of the box,
shown inFigure 8. Specific rules are then associated with each of the presentation ele-
ments defined in the structure schema. The fragment shown inFigure 9gives the rules
for the box corresponding to theBilingual_parag and of its two components: the
French_parag and theEnglish_parag (unsigned scaling factors are expressed in
terms of the current character size). TheLine entry specifies how lines of text are to
be justified. Note that theFrench_parag andEnglish_parag contain conditional
definitions, which are related to the particular view that has been selected. Finally, Fig-
ure 10 shows presentation rules that are associated with theATTR specifications in the
structure schema. In particular, these attributes select the display font for the French and
English segments of the text and suppress display of one language’s specification when
the other language’s view has been selected.

Direct manipulation of structured documents in ped tnt

It is important to note that while the representation of the document is structured, the
user’s view of manipulations over the document can, in many cases, be quite similar
to those presented by theWYSIWYG editor/formatters. An important class of commands
that can be presented in such a way are those that operate over selected regions of the
displayed text. In such operations, a cursor is initially positioned at one end or the other
of the selection and cursor motions cause the selection to expand or contract. An action
is applied to the selected region. Standardly,WYSIWYG editors permit their users to delete
such a selected region, duplicate the region, move the region (semantically, duplication
and deletion merged), or change some attributes of the display within the region (perhaps
the font of the display).

Analysis of the visual effects of these region-orientedWYSIWYG commands has shown
that these effects can be duplicated in the context of theped tnt . Unlike theWYSIWYG

document representation, operations applied in the context of the structured document
must maintain the correctness of the structure itself. When an operation such as ‘delete’
or ‘move’ modifies the document’s structure, the effects on the structure are defined
through heuristically-defined algorithms. Not all operations affect the structure—actions
such as ‘change font’ affect only the attributes associated with leaf nodes. Such actions
can be carried out by isolated application to the appropriate nodes.

Operations that modify the structure are permitted to leave ‘holes’ in thetnt —in other
words they are permitted to omit document elements that are required by the grammatical
definition. They are not, however, permitted to produce object orderings that cannot be
matched to the grammatical definition. These operations proceed in three steps:

1. The region is marked by the system’s user and the action selected.
2. The action is carried out, potentially leaving out parts of thetnt , as described.
3. Thetnt ’s correctness is restored by matching the elements that are present to those

specified in the grammar, creating new instances of any missing elements.

It is the second step that potentially modifies the structure and the point at which

40 R. FURUTA, V. QUINT, AND J. ANDŔE

<document>

<paragraph> <paragraph>

text-block text-block

<document>

<paragraph>

text-block

 Detailed abstracts

should not exceed five
pages. They must be
sent to the Program
Chairman.

Selected authors will
be notified. Duration of
one presentation will be
of either 25 or 45
minutes.

Detailed abstracts
should not exceed five
pages. Duration of one
presentation will be of
either 25 or 45 minutes.

Figure 11. Deletion across like structures

< document>

<paragraph>

text-block <itemized-list>

<i-item> <i-item>

item-marker <paragraph> item-marker <paragraph>

text-block text-block

<document>

<paragraph>

text-block <itemized-list>

<i-item>

item-marker <paragraph>

text-block

There are many things
bananas

There are many things to list
apples
bananas

Figure 12. Deletion across unlike structures

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 41

heuristically-defined algorithms can be applied to emulate the effects ofWYSIWYG

operations.
Perhaps the most successful demonstration that such heuristically-defined operations

can emulate the correspondingWYSIWYG operations is theped tnt ’s region deletion
command. Document objects located within the region are classified as completely se-
lected (the entire object is within the region), left-part selected (the region begins within
the object), right-part selected (the region ends within the object), and center-part selected
(the region both begins and ends within the object). Deletion when the object is center-
part selected does not affect the structure—only the object itself. Completely selected
objects are removed from thetnt , and hence the structure is affected. Left-part and
right-part selected objects are not removed from thetnt , but may affect the structure
since following deletion, the operation attempts to merge the left-part selected object
with the right-part selected object. Merging is permitted only if the selected objects are
of ‘compatible’ types (in effect, if the objects are of the same type).

Figures 11and12 illustrate the effects of the merging operation. The left hand side of
Figure 11shows a document fragment containing two paragraphs with a region beginning
in the middle of the first paragraph and extending through the middle of the second. After
deletion, the leaf text-blocks are combined and similarly the enclosing paragraphs are
combined. The resulting document fragment is shown on the right.Figure 12, illustrates
a case in which the objects are not combined. The upper illustration shows a region
that begins within a text-block and extends into the following itemized-list, completely
encompassing the first item of the itemized-list. Deletion preserves the distinction between
the text block and the itemized-list.

CURRENT RESEARCH PROBLEMS AND LIMITATIONS

Active research continues into the development of these and and similar systems. Much
of the work to date has concentrated on the logical representation of the document and
the mapping between logical and physical representations. As these issues become better
understood, attention is being paid to some important but secondary issues.

Given a grammatical specification of the generic structure of the document, an im-
portant unsolved problem is how to transform the form of an instance of the generic
structure to correspond to a different specification. Such transformations arise either be-
cause the system’s user wants to change the type of an object (and hence the object’s
contents are to be described by a different production in the grammar) or because cor-
rections have been made to the grammatical description itself. Reparsing the component
objects with the new target production will not necessarily succeed because the specifica-
tions are generally ambiguous. Simple redistribution schemes, such as those incorporated
into some syntax-directed editors for programming languages, also will not necessarily
provide correct results.

In the absence of an automatic solution, an approach that one of us (Furuta) is exam-
ining is to identify a formalism by which the relationships between the two document
objects can be expressed[19]. The formalism will serve as the basis for development of a
tool that will allow explicit specification of the relationships as well as providing a base
upon which more automatic transformations may be built and tested.

A second issue of importance that remains to be addressed is the very practical one of
how these systems will operate in the ‘real world’. The systems that we have described

42 R. FURUTA, V. QUINT, AND J. ANDŔE

are oriented to use in the scientific community of which we are a part. It may be the case
that further development will be necessary if such systems are to be used in significantly
different environments. As one example, governmental document standards are frequently
quite detailed and require extraordinarily complex and heavily nested structures. Support-
ing such documents may require adding levels of hierarchy to the user interface to keep
it manageable.

As a practical matter, many documents exist already in other formats. While being
able to import these other formats is clearly a desirable goal, it may be difficult to
achieve, particularly if the document model to be imported is less structured than the
models described here. The corresponding issue of export into other formats has been
investigated within the scope of our projects. Grif, in particular incorporates a ‘Translator’
that can produce input for a number of batch-oriented formatter[11].

These systems incorporate a structured representation of the document, and conse-
quently they may favor organized and structured specification of the document as well
(for example, top-down specification). Identification and development of techniques that
permit less-structured specification is important.

Finally, an important topic for future research will be to further explore the potential
of the structured document representation and of the grammatical specification. Scribe
permits its document description to be divided into multipleparts, each representing a
contiguous segment of the document. Each part can be formatted individually, or all
can be formatted at the same time. In either case, the output representation remains the
same—cross references and pagination are maintained correctly.

The tree structure used as a document representation in the systems of this paper lends
itself naturally to such subdivision of the document. Moreover, it permits development of
tools that control concurrent access to the document and its parts by multiple authors—
perhaps permitting multiple readers but only permitting a single writer to modify a given
subtree.

It also will be fruitful to consider further use of secondary structures in the document
representation. Perhaps such relationships could be used to associate data sources and
filters with the document, perhaps permitting a document to show an algorithm, the
input to the algorithm, and the output produced by the algorithm such that changes the
algorithm or its input would automatically change the output. Indeed, the representation
of the algorithm itself could be pretty-printed using such mechanisms.

Such considerations suggest that significantly more still can be done to increase the
flexibility with which computer systems assist the author. Indeed, an important consid-
eration in the development of these systems will not only be the tools that assist the
author in creation of a document, but also the tools that assist the author in revision,
maintenance, and reuse of the document and the tools that mediate between individuals
in a group of authors when creating a common document.

HISTORY

Grif

Project Grif was launched in 1982, at the Laboratoire de Génie Informatique, University
of Grenoble, with the support of INRIA. It was part of a larger project, called Tigre (Tiger
in English), whose aim was to first define a model for structured documents, and then to

INTERACTIVELY EDITING STRUCTURED DOCUMENTS 43

design and implement tools for handling documents: an interactive editor/formatter and
a data base management system.

Between six and eight persons contributed to the Tigre model definition. This larger
group was divided into two sub-groups, one for the editor (Grif) the other for the DBMS.
Grif was designed by Irène Vatton and Vincent Quint. Vatton and Quint began implement-
ing Grif in January 1984. Vatton was in charge of the specification and implementation
of the ‘Mediator’, which is the user interface manager and the display manager. This
version of the Mediator contains 11000 lines of Pascal and 4300 lines of C.

Quint specified and implemented the compilers and the editor itself. Grif incorporates
two compilers—one for the grammatical definition of logical structures and the other for
the presentation rules that specify the document’s layout and the graphical aspects. These
compilers produce tables that are used by the editor and total about 5000 lines of Pascal.
The Grif editor is some 25 000 lines of Pascal.

Hassan Bedor participated in the Grif project from 1985 to 1986. Bedor specified
and implemented the Translator used for translating Grif documents into the syntax of
various formatters (troff , TEX, LATEX, Mint, and SGML). The Translator is 4500 lines
of Pascal.

Until mid-1987, Grif development was carried out on a Perq running Unix, with its
specific window manager. Grif has now been ported to a Sun-3 under the X window
system, and a commercial firm in France has ported Grif to a PC-AT under MS-Windows
and is using it as a basis for development of an ODA editor. The Grif-related figures in
this paper were produced by the X window version.

ped tnt

The tnt document representation and theped tnt editor were developed by Richard
Furuta at the University of Washington beginning in the early 1980’s. As a prototype
intended as a testbed for the development of ideas, theped tnt ’s display is directed to
a standard character-oriented computer terminal. A generalized manipulator, which mod-
ifies the strict tree portion of thetnt , is the center of the system. Also implemented are
specialized editors for text-blocks, equation-blocks, and table-blocks. The implementation
totals some 35 000 lines of C code, and runs under Berkeley Unix.

ACKNOWLEDGEMENTS

Richard Furuta is affiliated with the Department of Computer Science and the Institute
for Advanced Computer Studies at the University of Maryland, College Park Campus.
His work was supported in part by a grant from the General Research Board of the
University of Maryland. Vincent Quint is affiliated with the Institut National de Recherche
en Informatique et en Automatique and the University of Grenoble, Laboratoire de Génie
Informatique. Jacques André is affiliated with the Institut National de Recherche en
Informatique et en Automatique, Rennes laboratory (IRISA).

REFERENCES

1. Document Composition Facility Generalized Markup Language: Concepts and design guide.
IBM Corporation, second edition, April 1980. Order number SH20-9188-0.

44 R. FURUTA, V. QUINT, AND J. ANDŔE

2. C. F. Goldfarb, ‘A generalized approach to document markup’, inProceedings of the ACM
SIGPLAN SIGOA Symposium on Text Manipulation, SIGPLAN Notices, 16(6):68–73, June
1981. The proceedings of the conference containing this paper are also available asSIGOA
Newsletter2(1&2), Spring/Summer 1981.

3. Brian K. Reid,Scribe: A Document Specification Language and its Compiler, PhD thesis,
Carnegie-Mellon University Computer Science Department, Pittsburgh, PA, October 1980.
Also issued as Technical Report CMU-CS-81-100.

4. Richard Furuta, Jeffrey Scofield, and Alan Shaw, ‘Document formatting systems: Survey,
concepts, and issues’,ACM Computing Surveys, 14(3):417–472, September 1982.

5. Text and Office Systems—Standard Generalized Markup Language. ISO, October 1986. Doc-
ument Number: ISO 8879–1986(E).

6. Office Document Architecture. International Standard Organisation, 1986. Draft International
Standard 8813.

7. Jacques André, Richard Furuta, and Vincent Quint, eds.Structured Documents, Cambridge
University Press, 1988. To appear.

8. Richard Furuta, ‘An Integrated, but not Exact-Representation, Editor/Formatter’, in J. C.
van Vliet, ed.Text Processing and Document Manipulation, pages 246–259, Cambridge Uni-
versity Press, April 1986. Proceedings of the international conference, University of Notting-
ham, 14–16 April 1986.

9. Richard Furuta,An Integrated, but not Exact-Representation, Editor/Formatter, PhD thesis,
University of Washington, Department of Computer Science, Seattle, WA, 1986. Also available
as Technical Report No. 86-09-08, Department of Computer Science, University of Washington
(August 1986).

10. Vincent Quint and Ir̀ene Vatton, ‘GRIF: An interactive system for structured document manip-
ulation’, in J. C. van Vliet, ed.Text Processing and Document Manipulation, pages 200–213,
Cambridge University Press, April 1986. Proceedings of the international conference, Univer-
sity of Nottingham, 14–16 April 1986.

11. Vincent Quint, Ir̀ene Vatton, and Hassan Bedor, ‘Grif: An interactive environment for TEX’, in
Jacques D́esarḿenien, ed.TEX for Scientific Documentation, pages 145–158, Springer-Verlag,
1986. Lecture notes in Computer Science, No. 236.

12. Vincent Quint, Ir̀ene Vatton, and Hassan Bedor, ‘The Grif system’,TSI—Technology and
Science of Informatics, 6(1):98–103, April 1987.

13. Jonathan Seybold, ‘Xerox’s “Star”’,The Seybold Report, 10(16), April 27, 1981.
14. David Canfield Smith, Charles Irby, Ralph Kimball, and Bill Verplank, ‘Designing the Star

user interface’,Byte, 7(4):242–282, April 1982.
15. Robert A. Morris, ‘Is what you see enough to get? A description of the Interleaf publish-

ing system’, in J. J. H. Miller, ed.PROTEXT II: Proceedings of the Second International
Conference on Text Processing Systems, pages 56–81, Boole Press, October 1985.

16. MacWrite. Apple Computer, Inc., 1984.
17. Ben Shneiderman, ‘Direct manipulation: A step beyond programming languages’,Computer,

16(8):57–69, August 1983.
18. Vincent Quint and Ir̀ene Vatton, ‘An abstract model for interactive pictures’, in H.-J. Bullinger

and B. Shackel, ed.Human-Computer Interaction—INTERACT’87, pages 643–647, North-
Holland, 1987.

19. Richard Furuta and P. David Stotts, ‘Specifying Structured Document Transformations’, in
J. C. van Vliet, ed.Document Manipulation and Typography, Cambridge University Press,
April 1988, Proceedings of the Inernational Conference on Electronic Publishing, Document
Manipulation and Typography, Nice (France), April 20–22, 1988.

	SUMMARY
	INTRODUCTION
	GENERAL ISSUES
	STRUCTURED DOCUMENTS
	The components of a structured document representation
	Grammatical definition of structure
	Aspects of a user interface
	Converting from logical structure to physical appearance
	Interactive manipulation of structured documents
	Definition of document structure
	Mapping from logiacl structure to physical appearance

	THE GRIF USER INTERFACE
	The syntax of Grif's structure schema and presentation model
	Direct manipulation of structured documents in pedtnt

	CURRENT RESEARCH PROBLEMS AND LIMITATIONS
	HISTORY
	ACKNOWLEDGEMENTS
	REFERENCES

