
Software Design
For a

Fuzzy Cognitive Map Modeling Tool

Stephen T. Mohr
66.698 Master’s Project
Fall 1997
Rensselaer Polytechnic Institute

8 September 1997

Table of Contents

OVERVIEW OF FUZZY COGNITIVE MAPS .. 1

GOALS AND REQUIREMENTS.. 3

ENABLING TECHNOLOGIES .. 4

USER INTERFACE... 4

LOGICAL STRUCTURE.. 8

REUSE GRANULARITY .. 8
MODEL – VIEW IMPLEMENTATION .. 8
GRAPH REPRESENTATION ... 9
PERSISTENCE.. 10
CLASSES .. 11
NODES AND EDGES ... 12
GRAPHS ... 13
APPLETS AND FRAME WINDOWS ... 17
SUPPORTING CLASSES .. 17

MACHINE LEARNING .. 18

SUMMARY.. 19

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 1

Investment

Productivity

Research

Profit

Sales

Quality

Support
Costs

Figure 1: Corporate Investment FCM

Overview of Fuzzy Cognitive Maps
Fuzzy cognitive maps (FCM) are soft computing tools which combine elements of fuzzy
logic and neural networks. Strictly speaking, an FCM is a digraph in which qualitative
concepts are the nodes, and causal influences are the edges. Concept nodes possess a
numeric state which denotes a qualitative measure of the concepts presence in the
conceptual domain. A high numeric value indicates the concept is strongly present. A
negative or zero value – implementations vary – indicates the concept is not currently
active or relevant to the conceptual domain. An FCM works in discrete steps. When a
strong correlation exists between a concept’s state and another concept’s state in the
preceding step, we say the former concept positively influences the latter concept and we
draw a positively weighted edge from the causing concept to the influenced concept.
When a strong negative correlation exists, there is a negative causal influence, and we
draw an edge with a negative weight. Two conceptual nodes without a direct link are
independent.

FCMs are preferable to quantitative tools in domains involving complex webs of causal
relationships, particularly feedback, and where hard quantitative measures of influences
are not available. They are easy to construct, allow users to rapidly compare their mental
model of a system with the real world, and, because of their fuzzy logic elements,
extremely forgiving of uncertain information. FCMs are excellent informal tools for
knowledge workers as well as a simple and clear way to visually represent causal
relationships.

Consider the FCM depicted in Figure 1. This simple FCM simulates the relationships
between capital investment in a company,
manufacturing productivity, profit, and other
measures of a company’s performance. Positive
casual influences are shown as black edges, while
negative casual influences are in red. Thus, when
quality is “up”, support costs will go down. When
investment is occurring, research spending goes up
and productivity increases. Because this model is
not quantitative, it is easily modified to reflect
changing beliefs and domain understanding. It
enables a user to quickly develop a model and test
investment strategies before putting substantial

effort into quantitative modeling. Because it is graphical, it quickly exposes the author’s
assumptions to his readers and permits them to study what happens to the author’s
arguments when those assumptions are changed.

The state of conceptual node A at time step n is computed by taking the sum of the
inputs, i.e., the state values at step n – 1 of nodes with edges coming into A multiplied by
the corresponding edge weights. Because this is a qualitative model, we can maintain
stability by normalizing the state value following summation. Many threshold functions
are available for this normalization. For the purposes of this project, we make the

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 2

following assumptions. Edge values are on the range [-1..1]. Three threshold functions
will be implemented and offered to the user. The first, the bivalent threshold function, is

()
() 0,1

0,0

>=

≤=

iii

iii

xxS

xxS

where xi is the summation of the inputs prior to normalization. The bivalent threshold
function is the simplest and by far the most commonly used threshold function in FCM
models. The next threshold function, trivalent, extends the range of concept state values
to include negative activation according to

()
()
() 5.0,1

5.05.0,0

5.0,1

≥=

<<−=

−≤−=

iii

iii

iii

xxS

xxS

xxS

Our final threshold function, the logistic signal function, is a continuous function and
provides true fuzzy conceptual node states. The function is

()
icxii

e
xS

−+
=

1

1

The constant, c, is critical in determining the degree of fuzzification of the function. At
large values, the logistic signal function approaches discrete threshold functions. We
have chosen c = 5 as a trade-off which favors the center of the range. Plots of this
threshold function for various values of the constant are shown in Figure 2.

Logistic Signal Function for Various Values of c

0

0.2

0.4

0.6

0.8

1

1.2

Xi

1

2

5

10

Figure 2: Comparisons of logistic signal functions

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 3

FCMs using either of the discrete threshold functions will either reach an equilibrium
state or converge to a limit cycle. The threshold functions force fuzzy state vectors to
non-fuzzy values. FCMs using the logistic signal threshold function may become
nonlinear under some conditions of feedback. In this case, chaotic attractors may exist.
Since the state vector of the map at time n is completely determined by the state vector at
time n-1, equilibrium states may be easily detected during FCM simulation by comparing
two successive state vectors. If they are identical, the map has reached equilibrium. The
problem of predicting limit cycles and chaotic attractors is left as a research problem for
the last stage of this project.

Goals and Requirements
This design is concerned with the production of a set of software revolving around, but
not limited to, an application that permits the construction, maintenance, and operation of
FCMs. The following items are the specific requirements of this software:

• Tool must be capable of building, saving, and loading FCM models
• Tool must be capable of calculating FCM states in continuous and single state

modes
• FCM states should be visually represented to the user in a form which clearly

distinguishes positive and negative casual influences and active and inactive
concept values

• Simple user interface
• Capable of deployment in standalone and HTML applet versions from a common

codebase
• Classes should be developed which enable reuse in the development of general

digraph related software
• The tool should permit inference of FCMs based on observed concepts and

successive state vectors

When the project was proposed, the desire was to create a tool for investigating FCMs.
As the plan was refined, it became apparent that the software should support dual
deployment: a standalone application for creating and using FCMs in the richest
environment, and as an embedded applet for publishing completed models and allowing
casual users to experience FCMs. Coincidentally, experience in consulting practice led
the author to realize there is a need to create and edit digraphs in a number of problem
domains. This is the motivation for setting a high standard for software reuse.

Consideration of the uses of FCMs suggests a need for machine learning and analytical
capabilities. Machine learning would help a user detect changes in an established model
by using inference against observed performance whenever a model’s predictions deviate
from observed behavior. By comparing the old model with the newly learned model, a
user should detect shifts in casual relationships. An algorithm presented in the literature
will be implemented to support this (see also Machine Learning, below). Similarly, it
would be convenient if the software could analyze a FCM to determine whether it
converges to an equilibrium state, a limit cycle, or whether it is, in fact, chaotic. In the
latter cases, it would be useful to analytically determine the limit cycle or strange

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 4

attractors. Unfortunately, we know FCMs are not amenable to a general Lyapunov
analysis [1]. Additional research will be conducted to see if a limit cycle analysis is
possible. If this proves possible, it may be incorporated into the final release of the
software.

Enabling Technologies
The Java programming language is selected for development of this software in order to
increase our familiarity with this language and to permit deployment as either a
standalone application or an embedded applet in an HTML page. The availability of
development tools and WWW browser capabilities drive the choice of development kit
(JDK) version. JDK 1.1 is newly released. The JDK itself includes a compiler, but no
integrated development environment supporting such productivity features such as class
browsers and graphical dialog box layout. WWW browsers are only beginning to be
released with support for the new JDK. Consequently, any software developed with JDK
1.1, specifically JavaBeans, will be unable to run as an HTML applet within commonly
available WWW browsers. Consequently, we have chosen JDK 1.0 for the development
kit version and Microsoft Visual J++ 1.1 as the development environment.

Although the primary platform for this application is Microsoft Windows NT 4.0 and
Windows 95, the software will not make use of any platform specific extensions. Any
JVM compliant with the JDK 1.0 specification should be able to run the finished
software. Nevertheless, we will attempt in the later phases of the project to demonstrate
integration of the FCM simulator with other applications using the Component Object
Model (COM) as the enabling object system. This takes advantage of the fact that
Microsoft’s JVM exposes Java classes as ActiveX components to the operating system.

User Interface
The user interface owes much to a Java application for demonstrating Dijkstra’s shortest
path algorithm written by Carla Laffra at Pace University [2]. This design makes some
key alterations, however, to support FCMs.

The heart of the modeling tool is the class FCMApplication, a subclass of the Java class
Applet. It consists of two visual components as shown in Figure 3. The display area for
the graph permits users to create and modify FCMs with a variety of mouse commands
(see Table 1). Concept nodes are created with default values of one for the current and
initial values, zero for the initial and current values of the external input, and “N” for the
name. These may be changed using the concept configuration dialog box depicted in
Figure 4.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 5

Button panel:
Clear
Run
Step
Reset
Pause
Exit

(Exit does not appear
when applet is
embedded in HTML)

FCM digraph view area

Label

Concept nodes are
labeled with the
concept name and
current value.
Concepts are color
coded by value.

Dragging the arrowhead sets casual
edge weights. Edges are labeled and
color coded by weight .

Figure 3: User interface thumbnail diagram for FCM applet

Target Gesture Effect
None Click New concept node
Concept nodei Drag New casual node
Concept node Ctrl + click Delete concept node
Concept node Dbl + click Invoke configuration

dialog box
Concept node Shift + drag Move concept node
Casual edgeii Shift + click Delete casual edge
Casual edge Drag Change edge weight

Table 1: User interface specification for digraph view

i Drag gesture must terminate at another concept node
ii Edges are always manipulated by their arrowheads. This holds for weight changes and deletion.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 6

Figure 4: Concept configuration dialog box

The interface specified so far is sufficient to create and modify an FCM. More is needed
to operate the state simulation. The button panel located to the right (“East” in Java
parlance) provides the minimal set of controls for the simulator. The interface
specification for the buttons is given in Table 2.

Button Effect
Clear Empty graph
Run Executes the state simulator in

continuous mode until user intervenes
or an equilibrium state is reached.
Simulator pauses for two seconds
between states.

Step Calculates and displays the next state
of the FCM.

Reset Resets existing FCM to its initial state
Pause Suspends an FCM run without losing

state
Exitiii Terminates the application

Table 2: User interface specification for button panel

A richer user interface is required for a standalone application. For this, we embed the
applet in a frame window as depicted in Figure 5. This adds the platform specific
capabilities of the title bar, e.g., system control boxes, as well as a menu bar exposing the
full features of the FCM modeling tool. The menu specification is given in Table 3.

iii The Exit button does not appear when the applet is embedded in an HTML page.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 7

Platform specific
title bar

Menu bar

FCMApplication
component (see
Figure 1)

Figure 5: Standalone application thumbnail diagram

Menu Item Effect
File
Open… Invokes system standard file dialog box

to open a previously saved FCM.
Learn… Invokes a system standard file dialog

box to open a data file of concept
names and state vectors.

Save Saves the current FCM under the
existing name. If no name has been
specified, Save As… is invoked.

Save As… Invokes a system standard file dialog
box to save the persistent properties of
the current FCM model.

Exit Terminates the application
Thresholdiv

Bivalent Selects the bivalent threshold function.
Trivalent Selects the trivalent threshold function
Logistic Selects the logistic threshold function
Help
About… Invokes a dialog box with information

descriptive of the application

Table 3: Application menu specification

iv Items in this menu are checked to denote the threshold function in use.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 8

Logical Structure
Java is an object-oriented language, necessitating a class-based design to the application.
In addition, the application is divided into componentsv as suggested in User Interface,
above. Although not as strongly component-based as JavaBean or ActiveX applications,
the requirement to provide HTML and standalone versions resulted in the creation of a
single component for this project. The application and its constituent component were
designed using the Object Modeling Technique (OMT), a formal method for object-
oriented design.

Reuse Granularity
The author’s experience has been that source code reuse occurs only when it is a design
requirement, and then only when careful consideration is given to the wider reuse
domain. If the designer considers the immediate application first and reuse second,
classes tend to be so focussed on the immediate project that the code is never used
elsewhere. Consequently, we need to consider what, if anything, in an FCM can be
reused.

Laffra’s code came to the author’s attention through another program that made use of it,
an implementation of Bayesian inference networks. Moreover, two other projects in the
author’s consulting practice have elements that either require or would benefit from
directed graphs. Clearly, then, we should develop a class library permitting the
construction of digraphsvi. In particular, we need classes implementing weighted edges,
nodes, and a class implementing digraphs using those classes. The classes need to
participate in the construction of digraphs by handling the addition and deletion of nodes
and edges. In particular, nodes must cooperate in communicating their status to
connected nodes to permit edge updates when a “downstream” node is deleted. All
classes must be capable of persistent storage. Most problems involving digraphs involve
the calculation of some algorithm on the digraph. Many such algorithms involve multiple
steps. Consequently, we design a digraph representation that involves a numeric edge
weight, a numeric state for the node, and a multiple step algorithm. Implementation of a
digraph using our classes involves specializing the graph class to implement the specific
algorithm.

Model – View Implementation
A common technique for facilitating reuse is the model-view-controller paradigm. Since
the controller is typically driven by the operating system, this is usually known as the
model-view paradigm in actual practice. Popular class frameworks, including Borland’s
Object Windows Library (OWL) and Microsoft’s Foundation Classes (MFC) make use of
this paradigm. In this approach, a single object, the model, encapsulates the state and
logic of the domain object. One or more visual representations, or views, are associated

v We use the term component in the sense of component software – software developed from multiple
“black box” components instantiated at runtime.
vi Of course, this generalization could be extended to undirected graphs, as well, but a balance was struck
between code complexity resulting from generalization and the possibility of reuse. We simply did not
encounter any problem involving undirected graphs.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 9

with a single model object. This potentially permits multiple views, e.g., chart and table,
of the same underlying data.

A key problem in the model-view approach is constructing the association between a
given model and its views. MFC uses an entirely separate class to perform this
association. However, this is not warranted by the scope of this project. We are, after all,
building a single application. Reuse is a desired outcome. Construction of yet another
class framework is a poor use of programming effortvii. Early design efforts included
complicated structures and processing for forwarding user events originating in a view to
the appropriate model. However, it quickly became apparent that this project would only
have a single view. Moreover, it seemed that general digraph construction would only
require a single view. Runtime use of digraphs would either use this view (as is the case
with this application), or no view at all, as in the case of an application which uses the
algorithm calculations in support of some other object. As an example, an interactive
graph applet written in Java [3], is strictly similar to our design in its visual
representation, except that nodes are square instead of round. This could easily be
accomplished via inheritance.

We quickly realized that a slight variation on the model – view approach would suffice to
limit the complexity of our classes while reaping some of the benefits of model – view
architecture. At each level of complexity – edge, node, and graph, we start with a
nonvisual class implementing the model for that level. Next, we derive a class
implementing the view of that level. Since we delegate the rendering of the graph to each
level, changes in the way graphs are drawn may be accomplished by overloading the
drawing routines within each class.

Graph Representation
Graphs in general, and digraphs in particular, are commonly represented in one of two
ways[4]. The adjacency matrix approach for a graph with n nodes uses an n x n matrix
in which an entry in the (i, j) element denotes an edge between nodes i and j. In a
digraph, this denotes a weighted edge from node i to node j with an edge weight
equivalent to the value of the matrix element. This is an effective representation for
many algorithms. For FCMs, this is computationally efficient as the state of the map is
defined as

()ECSC nn =+1

where C is a state vector, E is the adjacency matrix, and S is the threshold function[5].
Given this representation, each step of the FCM calculation becomes a matter of matrix
multiplication, followed by application of the threshold function.

An adjacency matrix is not resource efficient for sparse matrices, however, nor is it well
suited to the problem of interactively building and editing a graph. While many FCMs
are strongly interconnected, construction of an FCM using an adjacency matrix would

vii Another framework is also likely unwelcome, given the recent furor surrounding Netscape’s Internet
Foundation Classes and Microsoft’s Application Foundation Classes for Java. Less truly is more in today’s
Java market.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 10

involve frequent reallocation of memory. An adjacency structure approach is a better
approach to this problem. In our case, each node contains a dynamically sized arrayviii of
edges. Strictly speaking, this is sufficient to represent the graph. In the interests of
runtime efficiency, however, each node also maintains an array of nodes which have
edges coming into the node in question. This greatly simplifies the problem of
navigating backwards through the graph, e.g., when nodes connected to a deleted node
need to be notified of the deletion.

Our graph class, and the FCM related specialization derived from it, uses the adjacency
structure representation. When the user wishes to compute FCM states, an adjacency
maxtrix representation is created and encapsulated within another class. A state vector is
passed to the new class at each step to permit external inputs to be varied at any given
point in the process. Any node or edge deletions or additions causes the matrix
representation to be destroyed, forcing recreation the next time a state is calculated.
Since a user rarely changes casual relationships in a map during calculations, this has
little performance impact.

Persistence
A common practice in the implementation of persistence in class libraries is to use a
network database schema. This is the practice in OWL and MFC. Objects are initially
streamed with some kind of header denoting the class of the object. When instantiated,
the default constructor is used to create an object instance. The framework then calls
some required method which initializes the instance from streamed data. Subsequent
references to an object are written and read as an index denoting a previously written or
read object instance. The network database schema comes into play when objects contain
other objects. Examining the raw stream for such a case reveals the persistent form of the
contained object embedded within the streamed form of the containing object, as one
might expect. The navigational metaphor of the network database is a good model of the
containment relationship between objects.

Early design efforts anticipated the creation of a custom approach along these lines. A
review of current literature, however, has turned up a pair of classes,
PersistentInputStream and PersistentOutputStream, included in a recent Java language
book [6]. Although these classes possess some drawbacksix, the copyright terms of the
book permit their use in noncommercial applications, and their use will accelerate
development, permitting us to focus on the study of FCMs. Several changes should be
made, both to improve efficiency and to diminish proprietary source code. These
changes are:

viii Specifically, an instance of the Java class Vector, which preallocates memory in configurable chunks
and handles resource reclamation.
ix For pedagogical purposes, all output is written as text rather than binary format. Moreover, early
experience with these classes reveal some inconsistencies in how data is read and pushed back. The
structure tracking objects previously read and written is an instance of the Vector class, which limits its
efficiency when searching large numbers of objects. Finally, there is a problem with circular references,
e.g., a node containing an edge with a reference back to the containing node as the source of the edge.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 11

• Change from text format to binary for non-string data
• Eliminate known deficiencies in the existing source code
• Manage object indices through a hash table rather than an array
• Offer performance optimizations

The last point stems from our observation that some persistent objects are referenced only
once and will never, therefore, be found in the structure tracking previously streamed
objects. Offering programmers the option of writing such objects directly to and from the
stream, bypassing the overhead of tracking, will result in some performance benefit. In
the present project, edges are referenced only by the source node and can therefore
benefit from such an approach. An order of magnitude analysis of the impact of this
improvement is as follows. In a fully connected FCM comprised of N concept nodes,
there will be N(N-1) edges. Each edge in our design has two node references: one to the
source, and one to the target. This adds 2N(N-1) references requiring tracking. An
additional N-1 node references are added because each node tracks the nodes providing
inbound edges. In sum, we have O(N+2N(N-1)+N-1) = O(2N2-1) performance for the
execution of persistence requiring tracking, and O(N2-N) performance for the execution
of persistence directly to the stream. For maps with large numbers of concept nodes, this
optimization offers the potential of significant but not compelling performance gains.

Some of the listed changes will be made immediately, while others may have to wait
completion of the core FCM functionality. Priority is in descending order as listed.

Classes
The Object modeling Technique (OMT) formal method was used to complete an object-
oriented design satisfying the requirements set forth in Goals and Requirements. The
resulting class diagram appears in Figure 6. Classes distributed with the JDK, excepting
Vector, are not shown for clarity. The class FCMFrame is a thin class providing the
enhanced user interface when the program executes as a standalone application. The
FCMGraphView is the core component common to both standalone and embedded applet
modes. The principal classes, and those which embody the reuse strategy described
above, are Node, Edge, Graph, FCMGraph, and their associated classes NodeView,
EdgeView, GraphView, and FCMGraphView. We will begin our discussion of the class
design with these classes.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 12

EdgeView

Edges

NodeView

Vector

Nodes

GraphView

Edge

Graph

1+

Node

1+

FCMCalculator

PersistentInputStream PersistentOutputStream

FCMFrameOptions

FCMGraph

FCMApplication

FCMGraphView

ConceptPropertyDialog

NodeDialog

Figure 6: Master class diagram for the FCM Modeler application

Nodes and Edges
The class Edge is very simple. It maintains properties for its source and target nodes as
well as the edge weight. Some simple accessor methods are provided to control public
access to these properties. EdgeView is chiefly concerned with maintaining the visual
state of the edge. An edge color property is added, as are properties for the screen
coordinates and some values useful in improving rendering performance. EdgeView is
able to calculate a new edge weight value from a given arrowhead location as well as the
inverse operation. A draw method accepts a Graphics instance and draws the edge on it
when invoked. The FCM domain has no further requirements for edges, so there is no
reason to further specialize these two classes.

Nodes are more complicated. They contain a Vector instance whose elements are the
edges originating with the node. This is sufficient, but a Vector object containing
references to the nodes which provide inputs to the host node is added to simplify
navigation backwards through the graph, e.g., to notify influencing nodes of the
impending deletion of the host node. Initial and current state values are properties.
Initial and current external influence properties are added to implement a fixed external
influence on the node, i.e., when “clamping” a concept to represent a fixed policy
originating outside the map’s domain. The class NodeView performs visual services

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 13

analogous to those offered by EdgeView to Edge. Again, with the possible exception of
the external influence properties, FCMs do not require any unique methods or properties,
so Node and NodeView are not further specialized.

Graphs
The Graph class contains a Vector instance of Nodes and coordinates common digraph
operations such as adding and deleting edges and nodes. It also handles operations
relating to persistent storage. One of our assumptions is that a digraph has some
algorithm associated with it. Since we cannot specify this algorithm and maintain
generality, Graph is an abstract class. We specify the operational framework of
executing a multi-step algorithm in a multithreaded environment (to permit the algorithm
to be halted during a run), but the methods of this framework are virtual. Consequently,
any programmer reusing our classes must derive a model class from Graph which
implements the specific algorithm in question. This is the purpose of FCMGraph.
FCMGraph inherits the implementations of Graph, but adds the ability to calculate FCM
state vectors. For reasons discussed in Graph Representation, FCM Graph drives the
overall calculation process but delegates the individual state calculations to a contained
instance of FCMCalculator.

GraphView continues our practice of separating visual representations from domain
models. Typical GUI actions such as dragging and clicking are handled here. When the
graph must be rendered on the screen, it iterates through the contained NodeView
instances, directing them to draw themselves on the shared Graphics instance. The
NodeViews, in turn, direct their contained EdgeView instances to render. Consequently,
GraphView contains little rendering code of its own, serving instead as a coordinator for
its components. FCMs require overloaded functionality in two areas. FCM calculation is
sensitive to changes in the composition of the graph, the threshold function in effect, and
changes in external inputsx, so interface handlers which result in such changes must call
the WarnEngine method of FCMGraph. For this reason, we derive FCMGraphView
from GraphView to implement this. In addition, FCMGraphView must notify the frame
window of the threshold function in effect when it loads an FCM from persistent storage
or when clearing an FCM so that the appropriate menu check marks may be updated.

Following the sequence of events in the following message trace diagrams illuminates the
containment relationships inherent in graphs. These diagrams show the sequence of
messages needed to implement some common graph building operations.

x We commonly wish to change which concepts are clamped and when to model changes in external policy.
In the example FCM given in the overview, we might wish to clamp capital investment and research for
several state iterations to study a program of start-up investment, then unclamp the concepts to see how the
FCM performs in normal operation.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 14

Moving Node :
NodeView

Influencing Nodes :
NodeView

TargetNodes :
NodeView

Edges : EdgeViewGraph Model :
FCMGraph

GraphView :
FCMGraphView

1: NodeHitTest (int, int, int)

2: setGraphMode (int)

3: getNode (int)

4: setLocation (int, int)

5: calculateView ()

6: getTarget ()

7: notify (int, Object)

8: notify (int, Object)

9: calculateView ()

10: getTarget ()

11: notify (int, Object)

Figure 7: Message trace diagram for moving a node

Figure 7 depicts the application’s response to a user mouse drag gesture. The instance of
FCMGraphView performs hit testing to see if the initial mouse down gesture occurred
over a node. If it is, it sends itself a message to set its global state to indicate a drag
operation in progress. This allows the view to preserve state over a related set of discrete
events, i.e., mouse down, mouse move, mouse up. A reference to the appropriate node
object is obtained and used to instruct the object (known to be an instance of NodeView),
to set its location. This is all that is of interest at the level of the graph. Nodes, however,

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 15

must notify their contained edges as well as their influencing nodes to ensure all edges
originating or terminating at the affected node are updated. The node just moved handles
this by first sending calculateView messages to its contained edges, allowing them to
recalculate their view data. Next, the node notifies its peer influencing nodes, which
respond by sending calculateView messages to their contained edges. Thus, a simple
operation at the graph view level results in a cascade of messages at lower levels.

Figure 8 demonstrates the ripple effect caused by deleting an edge. Once again, hit
testing is performed. This time, node hit testing fails, so edge hit testing occurs. When it

succeeds, the view uses the indices thus obtainedxi to obtain a reference to the node. It
instructs this node to delete the edge. Before removing the edge from its collection, the
node obtains a reference to the edge’s target node and notifies that node of the impending

xi As hit test indices directly relate to dynamic structures, the validity of such indices is not generally
guaranteed beyond two immediately sequential method calls. However, since related mouse events
preclude operations which change the contents of these structures, indices are guaranteed for the duration
of these related gestures.

View : FCMGraph
View

Model : FCMGraph Edge : Edge Source : Node TargetNode : Node

1: NodeHitTest (int, int, int)

2: EdgeHitTest (int, int, int, int[])

3: getNode (int)

4: deleteEdge (int)

7: WarnEngine ()

5: getTarget ()

6: notify (int, Object)

Figure 8: Message trace diagram for deleting an edge

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 16

deletion. When this activity is complete, the graph view is able to warn its model that an
activity has taken place which affects state calculations.

The process of deleting a node, illustrated in Figure 9, is somewhat simpler. The hit test
– obtain node reference sequence allows the view to send the selected node a KillNode
message. Since nodes implicitly understand that they are connected to other nodes, the
node notifies its influences of the change before the node is deleted. Edges are
automatically garbage collected by the Java virtual machine when the node is deleted.
Finally, the view sends its model a warning regarding this change.

FCMGraphView :
FCMGraphView

FCMGraph :
FCMGraph

Deleted : Node Influences : Node

1: NodeHitTest

2: getNode

3: KillNode ()

5: deleteNode (int)

6: WarnEngine ()

4: notify (int, Object)

Figure 9: Message trace diagram for deleting a node

A final message trace diagram of interest is that regarding the calculation of FCM states.
As noted above, we use to instance of FCMCalculator contained in the FCMGraph
instance to calculate a single step at a time. This permits both single step operation and
pausing the algorithm to change external influence settings. As illustrated in Figure 10,
the graph constructs a vector of external inputs by querying its nodes. This vector is
submitted together with a state vector (similarly obtained) to the FCM calculator object.
Following calculation of the next step, assuming an equilibrium state has not been
reached, the view updates its nodes by sending them messages with the concept state
values returned by the calculator. The graph notifies its view that significant changes
have been made. In response, the view repaints itself, then suspends its thread briefly to
permit the user to observe the change. If additional state calculations are needed, the
view object loops through these steps.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 17

Engine ThreadFCM : FCMGraph Nodes : Node Engine :
FCMCalculator

View : FCMGraph
View

1: getExternalInput ()

2: Step (double[], double[])

4: setValue (double)

5: notify (int)

7: sleep

3: StateStep (double[])

6: repaint

Figure 10: Message trace diagram for FCM simulator operation

Applets and Frame Windows
FCMApplication, derived from the JDK class Applet, implements the code that handles
the standalone – embedded duality for the application. It contains the required
bootstrapping method, main, for standalone operation. During initialization, it attempts
to read a parameter, DataURL. If this value is present, it is embedded and the data file is
read from the server using HTTP. If it is not, an instance of FCMFrame is created.
FCMFrame is a frame window providing the menu bar.

Supporting Classes
AWT in JDK 1.0 provides minimal support for the construction of dialog boxes. Layout
of the degree expected in modern GUI applications requires a good deal of creativity. To
relieve the programmer of this burden, Microsoft’s Visual J++ development environment
provides a tool that generates the appropriate Java code given a dialog box laid out with
tools adopted from Microsoft’s other language tools. This is for control layout only. In
the present design, the class ConceptPropertyDialog will be generated to accommodate
the concept configuration dialog box. The class NodeDialog provides the logic behind
the dialog box.

The classes PersistentInputStream and PersistentOutputStream are discussed in
Persistence, above.

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 18

Machine Learning
Given qualitative information about a domain, e.g., normalized quantitative values or
fuzzy values provided by experts, it is desirable to infer an FCM. Initially, this is useful
to create a preliminary model of a system. A model’s causal relationships may change
over time as a result of policy changes. In this case, it is advisable to periodically infer an
FCM and compare it to an existing model to help detect such changes. The similarity of
FCMs to neural networks permits unsupervised learning of causal relationships in such
situations.

A simple scheme allows causal relationships to be inferred provided no external
influences are operating[7]. Given a discrete change in a concept value ∆Ci at time t and
an edge strength eij(t) between that conceptual node and the jth node in the graph,

() () ()[]teCCctete ijjitijij −∆∆+=+1

if ∆Ci is nonzero. If the concept value does not change, the edge weight is unchanged.
The constant ct is a learning coefficient which decreases in time. The value of the
coefficient is given by

() 



 −=

N
t

tct 1.1
11.0

where N is a constant controlling the rate of decrease. Some values of the learning
coefficient are shown in Figure 11.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

1 2 3 4 5 6

Time Step

5

10

15

Figure 11: Learning coefficient curves

The projected application will permit learning when presented with a text file in the
following format. The first n lines will be strings, each beginning with a strictly

Software Design for a Fuzzy Cognitive Map Modeling Tool
66.698 Master’s Project 8 September 1997

Page 19

alphabetic character, denoting the names of the concept nodes. The next line will be the
value of N for the learning coefficient equation. The remaining lines will consist of
comma delimited state vectors in time series order. The application will create the
appropriate nodes and learned edges, automatically provide a default layout, and display
the resultant FCM. All objects in the system at that time will be in the same state they
would have been in had they been manually created.

Summary
Fuzzy cognitive maps are qualitative tools useful for rapidly examining relationships
between domain concepts. They draw on soft computing concepts from the areas of
fuzzy logic and neural networks. They are computationally inexpensive and permit
convenient examination of various scenarios and options.

We have presented an object oriented design arrived at using OMT for an FCM modeling
application. Written in Java, it will permit desktop experimentation with FCMs and
World Wide Web-based publishing and examination of FCMs built with the tool. This
design anticipates a need for code reuse in the domain of digraph construction. The core
classes of the application have been designed using a variation of the common model –
view paradigm and segmented in such a way as to promote software reuse.

Given the project’s focus on the use of FCMs, we sought aids to productivity in areas that
do not directly bear on this focus. We found user interface assistance in Laffra’s
animation of Dijkstra’s shortest path algorithm, a layout code generator in Microsoft’s
Java development environment, and classes supporting streamed persistence. We
examined the latter’s shortcomings and proposed modifications to improve performance.
These proposals will be addressed as time permits in the remainder of the project.

A basic implementation of a machine learning algorithm from the literature will be
incorporated in the finished application. We have reviewed the algorithm and specified a
simple file format supporting its implementation.

Java’s flexibility promises an interesting development project resulting in a simple yet
useful tool for the study of fuzzy cognitive maps. Fuzzy cognitive maps bear study as
potential aids to decision makers facing fluid and uncertain problems. We hope to reach
a clearer understanding of their potential after using the application, whose design we
have here presented, in the final phase of this project.

1 Kosko, Bart, Fuzzy Engineering, Prentice Hall, Upper Saddle River, New Jersey, 1997, p. 121
2 Laffra, Carla, “Dijkstra’s Shortest Path Algorithm Animation in Java”, 1996,
http://www.cs.pace.edu/~www/javademos/DijkstraText.html
3 Erlingsson, Ulfar and Krishnamoorthy, Mukkai, “Interactive Graph Drawing”, undated,
http://www.cs.rpi.edu/projects/pb/graphdraw/index.html
4 Sedgewick, Robert, Algorithms in C++, Addison Wesley, Reading, Massachusetts, 1992, pp. 418 – 421.
5 Kosko, Bart, Neural Networks and Fuzzy Systems, Prentice Hall, Upper Saddle River, New Jersey, 1992,
ppp. 153 – 154.
6 Cornell, Gary and Horstmann, Cay, Core Java, Sunsoft Press, Mountain View California, 1996, p. 487ff.
7 Op cit., Kosko (1997), p. 521

	Table of Contents
	Overview of Fuzzy Cognitive Maps
	Goals and Requirements
	Enabling Technologies
	User Interface
	Logical Structure
	Reuse Granularity
	Model – View Implementation
	Graph Representation
	Persistence
	Classes
	Nodes and Edges
	Graphs
	Applets and Frame Windows
	Supporting Classes

	Machine Learning
	Summary

