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A useful tool for causal reasoning is the language of cognitive maps developed by political
scientists to analyse, predict and understand decisions. Although, this language is based
on simple inference rules and its semantics is ad hoc, it has many attractive aspects and
has been found useful in many applications: administrative sciences, game theory,
information analysis, popular political developments, electrical circuits analysis, cooperative
man-machines, distributed group-decision support and adaptation and learning, etc.
In this paper, we show how cognitive maps can be viewed in the context of relation
algebra, and how this algebra provides a semantic foundation that helps to develop
a computational tool using the language of cognitive maps. © 1998 Academic Press

1. Introduction

Causal knowledge generally involves many interacting concepts that make them difficult
to deal with, and for which analytical techniques are inadequate (Park, 1995). In this case,
other techniques, and particularly techniques stemmed from qualitative reasoning, can
be used to cope with this kind of knowledge. A cognitive map (CM) is based on those
techniques and is adequate for dealing with interacting concepts.

Generally, the basic elements of a CM are simple. The concepts an individual uses are
represented as points, and the causal relationships between these concepts are represent-
ed as arrows between these points. This representation gives a graph of points and
arrows, called a cognitive map. The strategic alternatives, all of the various causes and
effects, goals and the ultimate utility of the decision-making agent can all be considered
as concept variables, and represented as points in the causal map. Causal relationships
can take on basic values + (such as promotes, enhances, helps, is benefit to, etc.), — (such
as retards, hurts, prevents, is harmful to, etc.) and O (such as has no effect on, does not
matter for, etc.). With this representation, it is then relatively easy to see how concepts
and causal relationships are related to each other and to see the overall causal relation-
ships of one concept with another. For instance, the CM of Figure 1, studied by Welman
(1994) and taken from Levi and Tetlock (1980), explains how the Japanese made the
decision to attack Peal Harbor. Indeed, this portion of a CM states that “remaining idle
promotes the attrition of Japanese strength while enhancing the defensive preparedness of
the US, both of which decrease Japanese prospects for success in war”. This shows that a
CM is a set of concepts as “Japan remains idle”, “Japanese attrition”, etc., and a set of
signed edges representing causal relations like “promote(s)”, “enhance(s)”, “decrease(s)”, etc.

Note that the concepts’ domains are not necessarily defined precisely since there are no

%

obvious scales for measuring “US preparedness”, “success in war”, etc. Nevertheless, it
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FIGURE 1. A cognitive map (from Levi and Tetlock, 1980).

seems easy to catch the intended meaning of the signed relationships in this model
(Wellman, 1994). As any cognitive map, the CM of Figure 1 can be transformed in
a matrix called an adjacency or valency matrix. A valency matrix is a square matrix with
one row and one column for each concept in a CM. For instance, if we note the concepts
“Japan remains idle”, “Japanese attrition”, “Japanese success in war” and “US prepared-
ness” by a, b, ¢ and d, respectively, then the valency matrix of the CM represented in
Figure 1 is the following:

a b ¢ d
al0O + 0 +
bfo 0 — 0
clo0 0 0 O
d\o 0 — 0

Inferences that we can draw from this CM are based on a qualitative reasoning similar
to “the friends of my friends are friends”. Thus, in the case of Figure 1, remaining idle
decreases the prospects for Japanese success in a war along two causal paths. Notice that
the relationship between idleness and war prospects is negative since both paths agree. In
these conditions, Japan is interested to start a war as soon as possible if “she believes”
that war is inevitable. Thus, a CM provides an intuitive framework in which to form
decisions.

Cognitive maps (CMs) may be more complex than that given in this paper [see, e.g.
Buede & Ferrell (1993) for larger examples]. Furthermore, they are often cyclic since
cyclicness or feedback represent interesting dynamic systems (Kosko, 1992). For in-
stance, the CM of Figure 2 represents a view on research in advanced countries which is
a dynamic system reflected by many cycles: (1), (2), (3), etc. Such cycles are hard to
represent using trees, as for instance Markov or Bayesian trees, which are acyclic
representations by design.

In summary, CMs are a power tool which allows users to represent and reason on
causal relationships as reflected in realistic dynamic systems. Cyclic CMs have been
considered as ad hoc representations with simple inference rules and no semantics. In this
paper, we propose a relational model of cognitive maps as a semantic. With this model,
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FIGURE 2. A cognitive map representing an organization as loops.

we have developed a computational model that we are using in the context of multiagent
environments.

This paper is organized as follows. The next section relates previous works about
cognitive maps. Section 3 sketches the classical calculus of relations and details our
relational model of cognitive maps. Finally, Section 5 presents the implementation of the
proposed model and its applications in the context of multiagent systems.

2. Related works

CMs follow personal construct theory first put forward by Kelly (1955). His theory
provides a basis for representing an individual’s multiple perspectives. Kelly suggests
that understanding how individuals organize their environments requires that subjects
themselves define the relevant dimensions of that environment. He proposed a set of
techniques, known collectively as repertory grid, in order to facilitate empirical research
guided by the theory. Personal construct theory has spawned many fields and has been
used in the fields of international relations (Axelrod, 1976; Buede & Ferrell, 1993),
administrative sciences (Ross & Hall, 1980), management sciences (Eden, 1979; Smithin
& Sims, 1982; Diffenbach, 1993), game theory (Klein & Cooper, 1982), information
analysis (Montezemi & Conrath, 1986), popular political developments (Taber & Siegel,
1987; Taber, 1991), electrical circuits analysis (Styblinski & Meyer, 1988) distributed
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group-decision support (Zhang & Chen, 1988; Zhang, Chen and King, 1992; Zhang,
1996) and adaptation and learning (Kosko, 1986, 1988; 1992). Some of these studies were
based on crisp CMs (Axelrod, 1976; Eden, 1979; Smithin & Sims, 1982; Klein & Cooper,
1982; Montazemi & Conrath, 1986; Buede & Ferrell, 1993; Diffenbach, 1993) and others
on fuzzy CMs (Kosko, 1986, 1988, 1992; Zhang & Chen, 1988; Zhang et al., 1992; Zhang,
1996). In the case of crisp CMs, what matters is whether, the causal effects are positive
(+), negative (—) or neutral (0) and the relative strengths of those causal relations are
ignored. The idea of fuzzy CMs was introduced by Kosko (1986), who introduced causal
algebra operating in the range of [0, 1] for propagating causality on a fuzzy cognitive
map. Due to the limited range of fuzzy numbers, Kosko proposed to convert negative
influences into positive ones by using the idea of dis-concepts. In this context, Kosko
developed a fuzzy causal map and introduced a fuzzy causal algebra operating in the
range of [0, 1] for propagating causality. However, due to the limited range of fuzzy
numbers, negative influences were converted to positive ones, with the same absolute
values, by using dis-concepts or dis-factors. This is based on the following fact:

_ . +
Replace every v; = v; with v; 55 ~ v;.

Although this solution is attractive, doubling the size of the concept set may increase
computation time and space to unacceptable levels, particularly for the large CMs.
Moreover, the author did not give a semantics for the fuzzy causal values such as none,
some, etc.

In the same context, Zhang and his colleagues proposed a system called POOL2
(Zhang & Chen, 1988) which is a generic system for fuzzy cognitive map development
and decision analysis. This system uses an approach in which both negative and positive
assertions are weighted and kept separately based on the negative—positive—neutral
(NPN) interval [ — 1, 1] instead of values in [0, 1]. Later, the same team proposed the
D-POOL system (Zhang et al., 1992). This system is based on NPN logics and NPN
relations and strives for a cooperative or compromised solution between cognitive maps
(from relevant agents) through coherent communication and perspective sharing. Fi-
nally, the NPN causal inference has been also used by Park (1995) to study a fuzzy time
cognitive map with time lag on each arrow. The author developed a method of
translating the fuzzy CM that has different time lags into a fuzzy cognitive map having
the same unit time lag.

Notice that the NPN approach is a particular technique for associating numbers or
intervals with edges on directed graphs. Consequently, fuzzy CMs stemmed from this
approach are not really qualitative models, but rather quantitative models where
quantities are combined by propagation along paths. In other words, the interpretation
adopted by Zhang and his colleagues is based on fuzzy interval calculus which has no
semantic account in terms of fundamental concepts (Wellman, 1994). In fact, the defini-
tion of a precise semantic interpretation of qualitative causality has received very little
attention since all approaches to CMs were based on simple inference mechanisms in
order to give rise to a qualitative calculus about the consequences of a CM. The only
work that we are aware of in this context is Wellman’s (1994) approach. This author used
an approach based on graphical dependency models (the Bayesian networks), for
probabilistic reasoning, and sign algebras, for qualitative reasoning. This type of ap-
proach is usually used in Al and is only applicable in the acyclic case (i.e. a graph with no
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cycles) (Wellman, 1994). As stated previously however, the acyclic case does not reflect
realistic systems since these systems often contain cycles and feedbacks.

In this paper, we propose an alternative approach based on relation algebra and which
takes into account the cyclic case. Precisely, we use propagation-based inference proced-
ures, based on relation algebra, to derive relations among arbitrary connected concepts.

3. A relational theory of causal maps

The following description of classical cognitive maps comes mostly from Axelrod (1976)

and Nakumara, Iwai and Sawaragi (1982). Generally, causal links (causal relations)

between two concepts v; and v; have one of the eight values indicated in Table 1.
These causal relations are used to build cognitive maps, defined as follows.

Definition 1: A causal map CM := (C, A) is a directed graph that represents an indi-
vidual’s (i.e., an agent, a group of agents or an organization) assertions about its beliefs
with respect to its environment. The components of this graph are a set of points C (the
vertices) and a set of arrows A (the edges) between these points. The arrows are labelled
by elements of the set ¢:= {a, +, —,0, ®, ©, +,?}. A point represents a concept (also
called a concept variable in the sequel), which may be a goal or an action option of any
agent. It can also represent the utility of any agent or the utility of a group or an
organization, or any other concept appropriate to multiagent reasoning. An arrow
represents a causal relation between concepts, that is, it represents a causal assertion of
how one concept variable affects another. The concept variable at the origin of an arrow
is called a cause variable and that at the end point of the arrow is called the effect variable.

A path from variable v, to variable v, is a sequence of points vy, v,, ..., v,, together with
the non-zero arrows (ie. arrows labelled by a relation different from 0)
U1V, U3, ..., U,—10,. A path is trivial if it consists of a single point. The valency matrix

V of a causal map M is a square matrix of size n, where n is the number of concepts in M.
The entry V;; is the label of the arrow from v; to v; in M. If there is no such arrow, then
Vij = 0

Before detailing our model, we present a summary of the classical theory of CMs.

TaBLE 1
Causal links in a causal map

Causal relations Descriptions
+ .
v; S U; v; facilitates v;, v; helps vj, v; promotes v;, etc.
v; SV v; hinders v;, v; hurts v;, v; prevents v;, v; is harmful to v}, etc.
v; &v; v; has no effect on v;, v; does not matter or is neutral to v;, etc. Generally, this

relation is not depicted in cognitive maps.

v &0 v; does not retard v;, v; does not hurt v;, v; does not prevent v;, etc.

v S v, v; does not promote v;, v; does not help v;, v; is of no benefit to v;, etc.

v S; v; affects in some non-zero way v;, etc.

v L ov; +, —, and 0 can exist between variables v; v;.

v; 5 ; Conflicting assertions about the same relation have been made, this relation

is called ambivalent.
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3.1. CLASSICAL THEORY OF CMs

Four operators are defined on the set 4 of causal relations. They are union (U),
intersection (), sum (|) and multiplication (*). The laws of union and intersection are
obtained by consideringa, +, —,0, @, ©, + and ? as shorthands for { }, {+}, {—},
{0},{0, +},{0, =}, {+, —}and {+,0, —}, respectively. Thus, one has (Axelrod, 1976;
Nakumara et al., 1982)

ou +, e&=0u—,
t=+u—, ?7=00+uU—, (1)
a=+n0=4+n—-—=0n—.

It can be seen that a denotes conflicting assertions about a given link. Although not
stated explicitly in Nakumara et al. (1982), the law

Vx:iaux=x (2)

follows from the author’s considerations.

The laws of the sum operator are given below on the left (with “do” meaning
“distributes over”). From these laws, one can deduce a table giving the result of the
application of the sum operator to any pair of causal relations.

| a 0 + - & ©o = ?
Vx, ye®, a a a a a a a a a
(@ O0ly =y, 0O|la 0 + — @® © + 2?2
(b) aly =a, +la + + 2 4+ 2 2 2
© yly=y —la - ? - 2 - 7 7 (3)
d +/- =2 @|la ® + ? @ ?2 1 2
(e) |dowu, ©la © 2?2 - 2?2 © 7 2
() xly=ylx +|a + 2 2 2 2 4+ 2
20a 2 2 2?2 2 2 2 2

The laws of multiplication are given below on the left. On the right is the table deduced
from these laws.

* a 0 + - & o = ?
For any x,y€e®, a a 0 a a a
(@ +=xy=y, o|lo0o o0 O 0 O 0 0 0
(b) 0%y =0, +la 0 + — ® © 4+ ?
(c) axy=a, —|a 0 - + © @® + ? 4)
if y #0, @ 0 ®& &6 ® © ? 2
d —x—=+, |0 0 © ® 6 @& ? 2
(e) xdou, +la 0 + + 2 2 4+ 2
(f) x*xy=y=*x. 9 o 2 ?2 2 2 2 2
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Some entries are not given, because the laws of * lead to contradictory results. For
instance, according to the law given by Equation 4(c), a* @® = a. However, using
laws given by Equations 4(b)—(f) and Equations 1 and 2, one gets ax® =
ax(0Ou +)=ax0uax+ =0ua=0. In other words, the system is not consistent.

Despite this major drawback, let us explain what these operations are intended for.
Multiplication is used to calculate indirect effects. For instance, from v; = v; = v, there
is an indirect effect v; & v, [Equation 4(d)is — * — = +]. Given the set % of causal
relations and their interpretation given in Table 1, the six rules of multiplication seem
rather reasonable. For example, Equation 4(b) states that, if v; has no effect on v;, it is
natural that v; has no indirect effect on v, through v; (0 * y = 0), no matter what the effect
y of v; on vy is. Rule 4(c) states that, if the effect from v; to v; is ambivalent, the indirect
effect from v; to v, through v; is also ambivalent (a * y = a), even if the effect from v; to vy is
not ambivalent. Rule 4(f) states that * is commutative.

The sum operator is used to accumulate indirect effects from different paths. For
example, if there is a path from v; to v; with indirect effect + and another path with
indirect effect —, the net effect is?, according to Equation 3(d). Nakumara et al. (1982)
consider all the rules of Equation 3 easily acceptable, except for rule 3(b); they do not
justify this statement, though.

The operators = and | can be applied to matrices. Assume that VV and W are square
matrices of size n. Addition and multiplication of matrices are defined as follows:

V1 W)ij = Vijl Wija ®)
(Ve W)ij=Vig s Wij)| - [(Vig s W)). (6)

The nth power of a square matrix V, for n > 0, is then naturally defined by
Vi:=V and V"=V=sV" 1 (7)

The total effect of one concept on another is calculated according to the following
definition.

Definition 2. The total effect of variable v; on variable v; is the sum of the indirect effects
of all paths from v; to v;. Let V' be the valency matrix of a causal map. The total effect
matrix V, is the matrix that has as its ijth entry the total effect of v; on v;. That is,
Vi=VI|V2IV3 -,

It is easy to check that the sum operator is < -monotonic. This implies that there is
a ksuch that V, =V |V 2| ... |V

In summary, it is important to note that the classical view of cognitive maps is an
intuitive view with ad hoc rules to calculate direct and indirect effects. Furthermore, there
is no precise meaning of the primitive concepts, neither a sound formal treatment of
relations between concepts. Finally, as we have previously shown, the proposed model is
inconsistent. These considerations led us to develop the formal model presented in the
next section.

3.2. A RELATIONAL MODEL OF CAUSAL MAPS

3.2.1. Relations and relation algebra
The mathematical definition of a relation in terms of set theory is the following.
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Definition 3: A relation R on a set F is a subset of the Cartesian product F x F. FElements
X, ye F are said to be in relation R when (x, y)e R.

We conventionally employ the symbols ( V, A, —) for conjunction, disjunction and
implication between predicates and truth values. We use (U, N, <) for the union,
intersection and inclusion of sets. Finally, we use (U, N, <) to denote union, intersection
and inclusion of relations. Other symbols used in this text are: =, < are metalevel
implication and equivalence, respectively, : = is definitional equality and :< is defini-
tional equivalence.

Notice that relations are sets, and consequently we can consider their intersection,
union, complementation and inclusion. What follows is a definition of some of the usual
operations on relations.

Definition 4: Let R, S < F x F. The basic operations on relations are:

union: RUS:= {(x,y)|(x,y)eR V (x, y)e S},

intersection: RNS:= {(x, y)[(x, )R A (x, y) €S},

complement: R:= {(x, y)|(x, y)¢ R},

product, composition: ReS:= {(x, z)|Iye F:(x, y)e R A (y, 2)e S},
converse, transposition: R™:= {(x, y)|(y, x)e R},

. empty: O:= {(x, y)|false} = F x F,

. universal: L:= {(x, y)|true} = F x F.

. identity: I:= {(x, y)|x =y} = FxF,

. power: R%:=1 and R"=R°R" !lifn >0,

. inclusion: R € S:<Vx, y:[(x, y)eR —(x, y)eS].

SO NN R LI

—_

Priority of operations: The unary operations (T, 7) are performed first, followed by the
binary operation (°), and finally by the binary operations (U, N).

A finite relation R can be represented by a Boolean matrix, using the convention
R,y =1<(x,y)eR and R,, = 0<(x, y)¢ R. The definition of the relational operators
for Boolean matrices follows: we use A and V as operators on the set {0, 1}, considered
as a set of truth values in the usual way.

VoV yi=Va V Vi, (V)ik::_‘ Vi (negation), (VeV')y:= v Vii NV (8)
j=1

VoV ui=Va AN Vi, (VD= Vi,
Thus, for example, if F = {a, b}, we have
ab ab
O_aOO L_all OlT_ll 01 00\ (01
~p\oo0o)S T p\11) \1t1) \1to) \11)\0o1) \o1
(this example also shows that the labels of rows and columns may be explicit or implicit).
Relations over a set, Boolean matrices and some types of graphs are instances of

a more abstract concept, called relation algebra. A relation algebra is itself an extension
of a Boolean algebra, which is a more familiar concept.
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Definition 5. A Boolean algebra is a an algebra of the form (%, U, n, 7, O, L), which
satisfies the identities (Schmidt & Strohlein, 1993; Ladkin & Maddux, 1994)
(QUR)US = QU(RUVS),  (QNR)UQ =0,
(ONR)NS = QN(RNS), (QUR)NQ =0, RNR =0,
RUS = SUR, (ONR)US = (QUS)N(RUS),
RNS =SNR, (QUR)NS = (QNS)U(RNS).

From this definition, other familiar laws can be derived (see Ladkin and Maddux, 1994
for details) The partial ordering < on a Boolean algebra is defined by
Rc<cS<RNnS=R

Definition 6. A structure U is a relation algebra iff (Schmidt & Strohlein, 1993; Ladkin
&Maddux, 1994)

uz(A? u? m? 75 0! L’ O) T’ [)9

where (4, U, N, 7, O, L) is a Boolean algebra (called the reduct of #), ° is a binary
operation, T is a unary operation, I € A, and the following identities hold:

(0°R)°S =0Q°(R°S), (RUS)T = RTUS™,
(QOUR)°S =Q°SUR>S, (RoS)T=ST-R",
ReI=R=1°R, R"°R>SNS =0,
RT =R.

We refer to L as the Boolean unit of U, and to I as its identity element. Here are some
theorems that can be derived from these axioms:

RT=R", (RNS)T = R™nST,
I"=1, Q°(RNS)= Q°RNQ-S,
0" =0, Q< R<Q"cR",
L"=1L, Q< R=Q°S<R-S,

0°R=R-0=0, QcR=S-Q0c<S-R.

Schmidt and Strohlein (1993) mention that the set of all n x n matrices with coefficients
from a homogeneous relation algebra again form a relation algebra, with the relational
operators on these matrices defined as follows:

VeV U Viie V.

VOV )= VaLVi, (V)ik3=7ik’ j= )

VaV = Va Vi, (V= (Vki)T,

Let us show intuitively why it works. Consider the matrices below. The left one is
a 4 x 4 Boolean matrix. The middle one is the same matrix, but with groupings of rows
and columns; the result is a 2 x 2 matrix whose entries are 2 x 2 Boolean matrices, that is,
a matrix with four entries that are relations. The right one corresponds to the middle one:
each sub-matrix is simply replaced by a relation identifier in the obvious way. It is easy to
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see that applying the operations described in Equation 8 to 4 x 4 matrices such as the left
one gives the same result as applying the operations of Equation 9 to matrices such as the
right one:

<R11 R12>
R21 R22

Let us call a matrix whose entries are relations a relational matrix. In the same manner
as a valency matrix can be associated to a causal map (see Definition 1), one can associate
to a relational matrix a graph with arrows labelled by relations (we call such a map
a relational causal map). Thus, if we had relations modelling the classical causal relations
(+, —, ©,etc.), and relational operations modelling the operations on classical causal
relations (U, N, |, *), we would have a relational model of cognitive maps. Now, in view
of the contradiction brought to light in Section 3.1, this is an impossible task. Hence, our
goal is rather to find an alternative relational description of cognitive maps, while trying
to keep, as much as possible, the flavour of classical causal maps. Another goal is to
introduce a flexible model that can easily be extended if additional precision is required,
rather than being stuck with a small set of causal relations. This model is presented in the
following section.

R =
—_ = O =
S =[O =
—_ = [ D =
o olo =

1
1
0
1

—_ O = =
S o o =

3.2.2. The relation algebra of causal maps

Let A:={—,1,0, 1}. The numbers in A are intended to represent changes (variations) in
a concept variable, with — 1, 0, 1 denoting decrease, stability and increase, respectively.
How these variations are measured and what exactly is varying does not concern us here;
it could be, e.g. the utility of a variable, an amount of something, etc. Next, we define the
relations +, 0, — on the set A.

These are
1 0 -1 1 0 -1 1 0 -1
1/1 0 0 1/0 1 0 1/0 0 1
+:= 0/0 1 , 0:= 0[O0 1 O [, —:= 0/0 1 ,
—110 0 1 —110 1 0 —1\1 0

Recall that these relations are used to label arows of a relational causal map, thus
linking cause variables to effect variables. Consider the relation + . It is interpreted as
follows: an increase in the cause variable causes an increase in the effect variable,
a decrease in the cause variable causes a decrease in the effect variable, and the stability of
the cause variable promotes the stability of the effect variable (note that + is just the
identity relation and could be written I). Relation O states that the cause variable

promotes the stability of the effect variable, no matter how it changes. Relation — is
interpreted similarly.
We now use the primary relations +, — and O to define ®, ©, +,?and !

®:=0+, 6=0L—, +=4+u—, 2=4+uUu—-uU0, li=+nNn—.
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TABLE 2
Table for v
U o 0 + - ® © = ? !
0 0 0 + - ® e + ? !
0 0 0 ® © @& o ? ? 0
+ + & + £ © 7 £ 1 +
— - 6 = — ? e =+ ? -
® & @ o ? @ ? ? ? @
© © o ? © ? © ? ? ©
+ + ? + + ? ? + ? +
? ? ? ? ? ? ? ? ? ?
10+ - e e o+ 7
TABLE 3
Table for o
-0 0 4+ ®@ © + ? !
(0] 0 0 0 (0] (0] 0 0 0 (0]
0 0 0 0 0 0 0 0 0 0
+ 0] 0 + - &® ©o =+ ? !
— 0] 0 — + ©6 @ + ? !
@ o 0 ® © & o ? ? 0
e o 0 e & o6 o ? ? 0
+ (0] 0 + + ? ? + ? !
? 0 0 ? ? ? ? ? ? 0
A N S S SN A N S R

Before discussing the interpretation of the various relations further (in particular O,
0 and !), we present Tables 2—4 that show the result of the application of the relational
operators U, N, ° to the above relations. These tables are constructed by using Equation
8. Thus, for instance, it is easy to verify that — o — = + by multiplying the matrix
representing — by itself:

0 01 0 01 1 00
01 O0fefO 1 O|=[{0 1 O
1 00 1 00 0 01

The relational composition operation ( ©) corresponds to the multiplication operation
() of classical cognitive maps. Comparing Table 3 and the table in Equation 4, we see
that, with the exception of the classical a and the relational !, there is an exact
correspondence. Also, the classical O corresponds to both the relational O and the
relational 0. Although the status of the classical a is not clear, the fact that it is interpreted
by the empty set (see Section 3.1) leads us to compare it to the relation O; the match is not
too bad.
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TABLE 4
Table for N
n 0 0 + - @ o + ? |
0 0 0 0 (0] 0 0 0 0 (0]
0 o 0 ! ! 0 0 ! 0 !
+ 0 ! + ! + ! + + !
— 0 ! ! — ! — — — !
® 0 0 + ! ® 0 + © !
© o0 0 ! - 0 o - o !
+ 0 ! + - + - + % !
? o 0 + - & o =+ ? !
! o ! ! ! ! ! ! ! !

The relational union operation (U) has similarities with both classical union (uU) and
classical sum (| ). For example, assuming that the classical 0 corresponds to the relational
0, we have the classical law 0 U + = @ and the relational law 0 U + = @. Assuming
that the classical 0 corresponds to the relational O, we have the classical law + |0 = +
and the relational law + U O = + . The most conspicuous divergence concerns the
classical a. The law a|y = a means that it is not possible to weaken any contradiction;
contradictions propagate in the calculation of the total effect, because of Equations 3(b)
and 4(c). As we have indicated in Section 3.1, Nakumara et al. (1982) find it difficult to
accept a|y = a. In our case, no relation plays the role of a.

In our approach, the empty relation O is used to denote “unrelatedness” or “ambiva-
lence”. Asserting that there is no relationship between a cause variable and an effect
variable is just the same as making a contradictory assertion about this relationship.
Another way to realize the O corresponds to ambivalence is to “move” from L to O by
adding information. The universal relation L indicates that a variation of the cause
variable can cause any variation of the effect variable (increase, decrease or no variation);
this is complete uncertainty. Adding information, one goes from L through, e.g. ?, +,

+ . The relation + represents perfect information: any variation of the cause variable is
related to a single variation of the effect variable. Adding more information (too much
information, contradictory information), one then goes through ! to reach 0. With
respect to the representation of relational maps by matrices, the absence of an arrow
between two concepts in the graph is represented by O in the corresponding relational
matrix.

Note that we distinguish between the two relationships O and 0 since, in our model,
0 indicates that the relationship between two concepts exists and is “neutral”. Also, the
relation! = + N — = + N0 = — N 0 s partially ambivalent (somewhat less than O); it
is a weak ambivalent relation.

There are at least two ways to obtain a relation algebra Al = (4, U, N, ~, 0, L,°, T, +)
from the set of relations { +, 0, —}. One way is to take for A the full set of relations over
the set A (the full set of 3 x 3 matrices). This gives 2° = 512 relations. The other way is to
take for A the closure of { +, 0, — } under the five relational operations; the result is a set
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of 32 relations, whose atoms (minimal non-O relations) are

1 00 010 0 0 1 0 00 0 0 0
0 0 0 0 0 0 0 0 0 1 01 010
0 0 1 010 1 00 0 00 0 00

(these could be taken as primitive relations instead of +, 0, —).

A causal map CM can then be built just as in Section 3.1, using relations in 4 to label
the arrows. Alternatively, one can construct the associated (relational) valency matrix V.
Indirect effects of length k are given by the kth power of V, V *. Indirect effects are added
by means of u. The total effect matrix is the transitive closure of ¥, which is

Vve=1{) vk (10)
k>0

In fact, V* corresponds to the matrix V, of Definition 2 (we use V* rather than
V, because it is the standard notation for transitive closure). An “n xn matrix whose
entries are 3 x 3 matrices is a 3n x 3n matrix. This implies that V= = (2 V'* (see
Schmidt and Strohlein, 1993). It also means that ¥V * can be computed in O((3n)® = 0(n?)
steps using the Roy—Warshall algorithm; better algorithms also exist (Schmidt and
Strohlein, 1993). Furthermore, large systems with few interconnections may use space-
efficient representations (the implementation need not use the matrix view). Hence, the

approach developed here can be used beyond a few agents and a few concepts.

3.2.3. Discussion

Causal maps were originally proposed to capture the qualitative causal relationships
that exist between concepts in a decision structure. Some intuitive inference mechanisms,
based on reasoning from cause to effect, were proposed (Axelrod, 1976; Nakumara et al.,
1982). In this section, we have defined a precise semantic interpretation of qualitative
causality in terms of relation algebra, to justify these intuitive inference mechanisms.
Indeed, as discussed in the previous subsection, our model justifies most of the rules
proposed by Nakumara et al. As we have pointed out, the main difference concerns
ambivalence. Another difference is our law + U — = + vs. +| — = ?2. According to
Nakumara et al. (1982), + | — = ? says that the sum of + and — depends on which of
the indirect effects + or — is stronger; the rule expresses that the total effect is plus (+)
if the indirect effect + is stronger than the indirect effect — , is minus (—)if + is weaker
than —, and is zero (0) if + is as strong as — . It may be argued, however, that in
a qualitative approach it is difficult to know how a relation can be as strong or stronger
than another. It seems more reasonable to retain + and — for further reasoning. Our
model takes this point of view into account by having + v — = +.

It is also important to point out that, contrary to other models of cognitive maps, our
model distinguishes between the “unrelated” relation (i.e. O) and the “neutral” relation
(i.e. 0). The first relation expresses that there is no relation between two concepts, whereas
the second relation indicates that one concept has a neutral relation to another.

Our model also takes into account nonreversible causation, contrary to classical
models of cognitive maps. An example of nonreversible causation is “an increase in
v; causes an increase in v;, but a decrease in v; does not cause a decrease in v;.” For
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instance, the normal interpretation of “smoking causes illnesses” involves nonreversible
causation, becausse stopping smoking does not put out illnesses. In classical CM theory,
only reversible causation is allowed, because, e.g. v; 5 v ;is taken to mean both that “an
increase in v; causes an increase in v;” and “a decrease in v; causes a decrease in v;.” In our
model, reversible causation can be expressed by choosing the appropriate relation
among the set of 512 possible relations; for example, {(1, 1), (0,0), (— 1, 0), (— 1, 1)}
expresses that an increase in the cause variable causes an increase in the effect variable; it
also says that a decrease in the cause variable causes anything but a decrease in the effect
variable.

The n operation is used to combine relations when they are asserted together.
Suppose, for instance, that an agent 4 wants to produce a matrix ¥ by combining the
matrices V; and V, transmitted by two other agents 4; and A,. If 4 considers the
information sent by 4; and A, to be reliable, then she should define V:= V;nV,; the
result might be that some concepts become related by ambivalent relations (O, !). On the
other hand, if 4 considers both V; and V, to be possible (e.g. they represent a range of
opinions), then she should define V := V;UV,; the result is fuzzier information than that
of either V; or V,.

We have just mentioned that many more relations can be asserted than the few causal
relations of the classical theory. There are also two new operations, complementation
and converse, which still have to be exploited. Complementation allows to say that the
relationship between two concepts is, €.g. anything but 0 (expressed by 0). The converse
allows talking about “backward causality” (consequence).

An important advantage of the model is that it can be easily contracted or extended,
by starting with a different set A. Choosing A:= {— 1, 1} results in a smaller model.
Choosing A:= {— 2, —1,0, 1, 2} gives a larger model, in which finer distinctions can be
made; for example, it becomes possible to say that a large increase (2) in the cause
variable causes a small decrease (— 1) in the effect variable.

4. Implementation and application to multiagent environments

41. THE ¥2-YLAB TOOL

The crisp causal reasoning model presented in this paper has been implemented in
a system used as a computational tool supporting the relational manipulations. This tool
is called S#°YWlab (Caron, 1996) and is built over the Wlab software,f a freeware
package developed by INRIA, France. This tool enables users (1) to edit matrices about
relations, (2) store matrices in the working memory, (3) execute algebraic operations on
matrices and (4) calculate the total effect matrix as precised by Equation 10. Any session
begins by presenting a matrix called “working copy” which is displayed on the screen for
editing. Using this matrix allows users to represent relations like +, —, etc. A whole set
of matrices can be kept in the working session to allow any combination of relations.

With this tool, we are investigating the causal reasoning in multiagent environments
(Chaib-draa, 1997). Causal reasoning is important in multiagent environments because it

+ This software can be obtained by anonymous ftp from “ftp.inria.fr;/INRIA/Scilab”.
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allows to model interrelationships or causalities among a set of individual and social
concepts. This provides a foundation to (1) test a model about the prediction of how
agents will respond to expected (or not) events; (2) explain how agents have done specific
actions; (3) make a decision in a distributed environment; and (4) analyse and compare
the agents’ causal representations. All these aspects are important for coordination,
conflict solving and the emergence of cooperation between agents.

42. REASONING ABOUT CHANGES IN AN ORGANIZATION OF AGENTS

Weick (1969) suggested to change the prevalent static view of an organization of agents
to a dynamic view which is sustained by change. Precisely, he proposed that organization
and change were two sides of the same social phenomena. His reasoning was that an
organization is a process of co-evolution of agents’ perceptions, cognitions and actions.
In this context, Weick proposed a theory of organization and change based on the
graphs of loops in evolving social systems. Recently, additioinal investigation guided by
this approach (Bougon & Komocar, 1990) tried to articulate how cognitive maps provide
a way to identify the loops that produce and control an organization.

In multiagent systems, the study of an organization of agents has generally focused on
some structural models such as Moulin and Chaib-draa (1996): (1) centralized and
hierarchical organizations, (2) organizations as authority structure, (3) market-like or-
ganizations and (4) organizations as communities with rules of behaviour. All these
structures missed dynamic aspects and influences that exist in an organization of agents.
Generally, dynamic aspects and influences evolve through paths that close on themselves
and form loops. We have realized that such loops are important for an organization of
agents for two main reasons: (i) a change in an organization is the result of deviation
amplifying loops and (ii) the stability of an organization is the result of deviation
countering loops (Bougon & Komocar, 1990).

As an example, consider the organization that binds researchers, grant agencies
and qualified personnel and for which, we only consider the three basic relationships
(+, 0,1 —) for the sake of simplicity and readability. The causal map representing this
organization is shown in Figure 2. The meaning of this CM is clear and we shall explain
it no more. In this causal map, concepts link together to form loops, some of which are
numbered (1)—(7). Loops as (1), (4)—(7), etc., containing an even number of “ — ” relations,
are deviation-amplifying loops. Change in the organization is the result of such loops,
because any initial increase (or decrease) in any concept loops back to that concept as an
additional increase (or decrease) which, in turn, leads to more increase (or decrease).
Thus, in loop (5), an increase in “research quality” improves “researcher satisfaction”.
Increase in “satisfaction of researchers” allows, in turn, to improve the “retention of the
best researchers”. Finally, the improvement of “retention of the best researchers” im-
proves “research quality”.

Loops as (2) and (3), containing an odd number of “ — ” relations, are deviation-
countering loops (Bougon & Komocar, 1980). The stability of the organization is the
result of such loops. In the case of loop (2), for instance, an increase of “resources for
research” can lead to an increase of “salaries” which, in turn, reduces the resources

2

t Here O represents the “unrelated” and the “neutral”.
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allowed to research. If this reduction is not enough to compensate the initial increase of
resources, then a residual increase of salaries takes place which, in turn, reduces the
resources, and so on, until a balance between the initial increase of resources and salaries
is reached. Thus, deviation-countering loops are useful for stabilizing the growth gener-
ated in an organization.

Thus, we can conceptualize an organization of agents as a “whole” composed of loops
of influences. This is a wholistic approach in which the “whole” constrains the concepts
and the relationships between them. By achieving this, we obtain a dynamic system in
which deviation-amplifying loops are responsible for change and deviation-countering
loops are responsible for the stability of the organization. Using these loops, an indi-
vidual strategist can direct strategic change in the desired direction. This can be done by
(1) choosing and changing a loop or (2) choosing and changing a set of loops (Bougon
& Komocar, 1990). Our ¥ % °Wlab tool can be used in this context to (1) identify the
type of loops (deviation-amplifying or deviation-countering) and (2) develop a strategic
plan to change a wholistic system by changing its loops. Notice that an organization
considered as a whole of loops, is represented by its valency matrix in the context of
S RoWlab. The study of this valency matrix allows one to identify the type of loops.
Firstly, if V;;' = +, then there exists at least one deviation-amplifying loop through
node i. Secondly, if V;;7 = —, then there exists at least one deviation-countering loop
through i. Strategic changes to a wholistic system can be made by changing a loop or
a set of loops (Bougon & Komocar, 1990). Of course, the loop to be changed should be
a weak loop which is loosely coupled to the system. Changing a loop (from deviation-
amplifying to deviation-countering, or vice versa), can be done by (1) adding, removing or
replacing a node; (2) changing the label of a link. All those changes can be done by users
of % o Wlab tool in an easy way, by editing and manipulating the valency and the total
effect matrices.

4.3. DISPARITIES BETWEEN AGENTS

Another approach that we are investigating concerns the reduction of disparities be-
tween agents. In this context, we have considered every individual agent as seeing
a situation through an unique set of perceptual filters that reflects its capabilities and its
experience, as suggested by the personal construct theory of Kelly (1955). Precisely, we
have used causal maps at different levels to represent the subjective views. Thus,
first-order cognitive maps show the views of individuals (or group of individuals) such as
I, J, K, etc. Second-order cognitive maps show what agent X thinks agent Y is thinking
and vice versa. Third-order maps show what agent X thinks agent Y thinks agent Z is
thinking and vice versa. Similarly, higher-order cognitive maps can be constructed. Here
also, our - YWlab tool provides an inference procedure that allows individuals to
reason on others in the context of negotiation, coordination and cooperation between
agents. This reasoning can bear on (1) predicting what others can do (this helps in
negotiation and coordination between agents), (2) explaining what others have done;
(3) trying to demonstrate to others the importance of some area of causal relationships
between concepts (this helps in negotiation and mediation between agents) and (4) ana-
lyse and compare the agents’ causal representations. Readers interested in this approach
can refer to Chaib-draa (1997).
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FIGURE 3. An illustrative example for decision-making in a multiagent environment.

44. CMs FOR REPRESENTING QUALITATIVE DISTRIBUTED DECISION MAKING

CMs can also help an agent or a group of agents considered as a whole to make
a decision. Given a causal map with one or more decision variables and a utility variable,
which decision should be taken and which should be rejected? To achieve this, the
concerned entity should calculate the total effect (as precised by Equation 10) of each
decision on the utility variable. Those decisions that have a positive total effect on utility
should be chosen, and decisions that have a negative total effect should be rejected.
Decisioins with a nonnegative total effect on utility should not be rejected, and decisions
with a nonpositive total effect should not be accepted. No advice can be given about
decisions with a universal, a nonzero or an ambivalent total effect on utility.

To illustrate the decision-making process in the context of multiagent environments,
consider, for example, the causal map of the Professor P, (considered as an agent) shown
in Figure 3. This professor has to choose between two courses D; and D, (D and D, are
decisions variables). Furthermore, P; works with a colleague P, in the same research
group (this group is called here G;,) and shares with her some students. P;’s causal map,
shown in Figure 3, includes the following beliefs. D, favours the theoretical knowledge of
G,,’s students. Greater theoretical knowledge gives a greater motivation to students.
Greater motivation of students gives a better quality of research for group G,,, which
gives, in turn, a greater utility of Gy,. P, gives a course C; that improves, as D, the
theoretical knowledge of G,,’s students. This course, however, has the disadvantage to
be very hard and this makes G,’s students lose their motivation. Finally, the second
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decision variable D, is an easy course that decreases the workload of P;. Obviously,
decreasing P;’s workload increases her utility.

In this case, how can P; make her choice between the two courses D; and D,? Notice
that in the context of our example, P; should reason about other agents (i.c. P, and Gy,)
to make her decision. Under some circumstances, she can also collaborate with them to
develop her decision. In this sense, the decision-making process considered here is
a multiagent process. To run this process, it might be useful to convert the causal map
being analysed to the form of a valency matrix V. With the valency matrix, P; can
calculate indirect paths of length 2 (i.e. V'2), 3 (i.e. V' ?), etc., and the total effect matrix V' *
(see Equation 10). In fact, V'* tells P; how the decision variables D, and D, affect her
utility and G,,’s utility. Here also our &%  Wlab tool allows one to calculate direct and
indirect effects and consequently allows agents to make decisions. As explained pre-
viously, each concerned agent should calculate the total effect of each decision on the
utility variable. Those decisions that have a positive total effect on utility should be
chosen, and decisions that have a negative effect should be rejected. Advice on other total
effects can be based on heuristics. Adopting this procedure for the example of Section 2.3
gives the following matrix of size 2 x 2 (keeping only the relevant entries) involving two
decision concepts (DC), D, and D,, and two utilities considered as value concepts (V' C),
namely, the utility of G, and the utility of P:

DC\VC  Utility of G,, Utility of P,
Dl + -

Thus, P; perceives (1) decision D; as having a positive effect on the utility of G, and
a negative effect on her utility; (2) decision D, as having a negative effect on the utility of
Gy, and a positive effect on her utility. In these conditions, it depends on how P; and
P, want to cooperate and how do they rank the utility of G, and the utility of P;. If we
assume, for example, that the utility of G, is more important than the utility of P, then
decision D{ would be preferred. Conversely, D, would be the preferred decision if the
utility of P; is more important than the utility of G,.

5. Conclusion and future work

We have explained that the classical model of cognitive maps is an intuitive model with
ad hoc rules to calculate direct and indirect effects. It is also a model which has no precise
meaning of the primitive concepts, neither a sound formal treatment of relations between
concepts. Finally, we have shown that this model is not consistent. These considerations
led us to develop a cognitive map representation based on relation algebra. This
representation (1) defines a precise semantic interpretation of qualitative causalities;
(2) justifies most of the classical intuitive inference laws for reasoning from cause to
effect; and (3) provides users with formulae to determine certain quantitative and
qualitative features of cognitive maps.
There are many directions in which the proposal made here can be extended.
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 The full possibilities of relation algebra have yet to be exploited. In particular, it allows
equation solving, which would certainly be useful. Also, as we have indicated in the
text, the relational operations of complementation and conversion offer ways of
expressing relationships between concepts that are not available in the classical theory
of cognitive maps. Another option is to study “fuzzy relations” between agents’
concepts (Kosko, 1992; Zhang et al., 1992; Chaib-draa, 1994; Zhang, 1996). Our
approach might be extended in this direction to take into account many degrees and
vague degrees of influence between agents such as: none, very little, sometimes, a lot,
usually, more or less, etc.

o Applications such as the following ones must be investigated in greater depth:
(1) negotiation and mediation between agents reasoning about their subjective views,
(2) knowledge available to or necessary to agents in the case of nested cognitive maps,
(3) reasoning about the wholistic approach and (4) reasoning on social laws, parti-
cularly for qualitative decision-making and coordination.

This work was supported in part by the Natural Sciences and Engineering Research Council of
Canada under grants OGP-0121634 and OGP-0089769.
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