
Using a Text Engineering Framework to Build an Extendable and
Portable IE-based Summarisation System

Diana Maynard, Kalina Bontcheva, Horacio Saggion, Hamish Cunningham, Oana Hamza
Dept of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

Paper ID:

Keywords: summarisation, Information Extraction, GATE, evaluation

Contact Author: Diana Maynard (diana@dcs.shef.ac.uk)

Under consideration for other conferences (specify)?

Abstract
In this paper we show how tools provided by a text engineering framework (GATE)

have been used to build an IE-based summarisation system in the domain of
occupational health and safety. The core of the application is based on pattern-action
grammar rules, which can easily be extended or ported to new domains. The GATE
framework was also used to evaluate automatically the system’s performance.



Using a Text Engineering Framework to Build an Extendable and
Portable IE-based Summarisation System

Paper ID:

Abstract

In this paper we show how tools pro-
vided by a text engineering frame-
work (GATE) have been used to build
an IE-based summarisation system in
the domain of occupational health and
safety. The core of the application
is based on pattern-action grammar
rules, which can easily be extended or
ported to new domains. The GATE
framework was also used to evalu-
ate automatically the system’s perfor-
mance.

1 Introduction

According to (Mani, 2000), the goal of auto-
matic summarization is to take an information
source, extract content from it, and present
the most important content to the user in a
condensed form and in a manner sensitive to
the user’s or application needs. In this paper
we present an IE-based summarisation system
(HaSIE), which aims at producing a summary
from annual company reports about the compa-
nies’ performance on Health and Safety issues.
The extracted summaries allow the automated
production of statistical metrics describing the
level of compliance with Health and Safety rec-
ommendations and any relevant legislation that
may be implemented.

The system detects whether or not the text
contains information about health and safety
and if so, it extracts relevant passages and con-
ceptual information such as awards and number
of employees. In this particular application it is
vital that we detect correctly whether the report
contains health and safety information, because
this is one of the main user requirements. The
reason why a given report might not contain
such information is because the annual company

reports contain primarily financial, managerial
and performance information.

This summarisation work has been carried
out using the GATE architecture. It offers sup-
port for the majority of tasks typically per-
formed as part of building a new NLP appli-
cation, e.g. module development and testing,
corpus annotation, and performance evaluation.
The framework also has a thorough Unicode
support, which enables the development of ap-
plications and resources in multiple languages
(see (Tablan et al., 2002)).

The rest of the paper is structured as follows.
Section 2 briefly outlines the GATE architec-
ture and associated tools and resources used to
develop the HaSIE system described here. and
Section 3 describes the information extraction
modules used. Section 4 describes in more de-
tail the process of extracting information and
creating the summaries. Next we discuss eval-
uation in Section 5 and give some preliminary
results for our system. Finally, Section 6 dis-
cusses how the HaSIE system is related to other
approaches to summarisation.

2 GATE in Brief

GATE (Cunningham, 2002) is an architecture, a
framework and a development environment for
human language technology modules and ap-
plications. During the design phase, the ar-
chitectural elements guide and structure the
overall shape of the system. The framework
helps during the development phase by pro-
viding ready made implementations for parts
of the architecture. It is open to new types
of data, processing resources or visual compo-
nents, which can be easily added and integrated
into new or existing systems. Finally the devel-
opment environment facilitates exploitation
of the framework, by aiding overall development

1



and providing a debugging mechanism for new
modules. Because GATE is a component-based
model, this allows for easy coupling and decou-
pling of the processors, thereby facilitating com-
parison of alternative configurations of the sys-
tem or different versions of the same module.
The availability of tools for easy visualisation
of data at each point during the development
process aids immediate interpretation of the re-
sults.

A set of reusable modules is provided with
the backplane, which are able to perform basic
language processing tasks such as POS tagging
and semantic tagging. These eliminate the need
for users to keep reinventing the same resources,
and provide a good starting point for new appli-
cations. We used these components as a basis
for building the HaSIE summarisation system
described below (see Section 3).

GATE distinguishes between data, algo-
rithms, and ways of visualising them. In other
words, GATE components are one of three
types:

• LanguageResources (LRs) represent en-
tities such as lexicons, corpora or ontolo-
gies;

• ProcessingResources (PRs) represent
entities that are primarily algorithmic,
such as parsers, generators or n-gram mod-
ellers;

• VisualResources (VRs) represent visual-
isation and editing components that partic-
ipate in GUIs.

These resources can be local to the user’s ma-
chine or remote (available via HTTP), and all
can be extended by users without modification
to GATE itself. In order to abstract the lan-
guage processing from the actual format of the
data, GATE supports a variety of input and
output formats including XML, RTF, HTML,
SGML, email and plain text.

2.1 Finite-state transduction support
in GATE

In order to make it easier to build new process-
ing resources, GATE comes with built-in finite-

state transduction capabilities, which we have
used as the core of the summarisation process
(see Section 4). The transducer runs on gram-
mars written in the JAPE (Java Annotations
Pattern Engine) language (Cunningham et al.,
2002), which describes patterns to match and
annotations to be created as a result. JAPE
is a version of CPSL (Common Pattern Spec-
ification Language) (Appelt, 1996), which pro-
vides finite state transduction over annotations
based on regular expressions. A JAPE gram-
mar consists of a set of phases, each of which
consists of a set of pattern/action rules, and
which run sequentially. Patterns can be spec-
ified by describing a specific text string, or ex-
isting annotations (e.g. annotations created by
the tokeniser, gazetteer, part-of-speech tagger,
or document format analysis). Rule prioritisa-
tion (if activated) prevents multiple assignment
of annotations to the same text string.

Creating new modules and applications on
the basis of JAPE, such as a summarisa-
tion component for another domain, is a low-
overhead task, because the user only needs to
be concerned with writing new grammar rules
(though other modules such as the gazetteer
may also need to be updated or modified). The
amount of tuning necessary for a new domain
can vary depending on the type of information
that needs to be extracted, and how similar
the domain and text structure is to that which
existing components are designed for. For ex-
ample, we reuse much of the same information
about companies, dates, numbers, etc from the
default Information Extraction components, so
very little tuning was needed in this case, espe-
cially since the patterns we aim to identify for
health and safety are quite easy to define, but
this cannot be guaranteed for all other domains
or applications.

So far, we have successfully used JAPE for
named entity recognition, sentence splitting,
and summarisation, and we intend to experi-
ment with it in other fields such as shallow syn-
tactic parsing. Although at the moment we are
using hand-crafted rules, it would be possible
for an application to learn rules automatically
for the Jape transducers in a manner similar to

2



(Day et al., 1997). These rules could then be
verified or amended by a human if necessary, as
they are human readable.

2.2 Evaluation tools

A vital part of any language processing ap-
plication is the evaluation of its performance,
and a development environment for this pur-
pose would not be complete without some mech-
anisms for its measurement in a large number
of test cases. GATE contains two such mech-
anisms: an evaluation tool (AnnotationDiff)
which enables automated performance measure-
ment and visualisation of the results, and a
benchmarking tool, which enables the tracking
of a system’s progress and regression testing.

Gate’s AnnotationDiff tool enables two sets
of annotations on a document to be compared,
in order to either compare a system-annotated
text with a reference (hand-annotated) text, or
to compare the output of two different versions
of the system (or two different systems). For
each annotation type, figures are generated for
precision, recall, F-measure and false positives.

The AnnotationDiff viewer displays the two
sets of annotations, marked with different
colours (similar to ‘visual diff’ implementations
such as in the MKS Toolkit or TkDiff). Anno-
tations in the key set have two possible colours
depending on their state: white for annotations
which have a compatible (or partially compat-
ible) annotation in the response set, and or-
ange for annotations which are missing in the
response set. Annotations in the response set
have three possible colours: green if they are
compatible with the key annotation, blue if they
are partially compatible, and red if they are
spurious. In the viewer, two annotations will
be positioned on the same row if they are co-
extensive, and on different rows if not.

GATE’s benchmarking tool differs from the
AnnotationDiff in that it enables evaluation to
be carried out over a whole corpus rather than
a single document. It also enables tracking
of the system’s performance over time. Fur-
thermore, the system can be run in verbose
mode, where for each performance figure below
a certain threshold (set by the user), the non-

coextensive annotations (and their correspond-
ing text) will be displayed. This information is
useful e.g., when developing new JAPE gram-
mar rules to cover cases currently missed by the
system.

3 GATE and the HaSIE system

HaSIE uses a set of Named Entity Recognition
modules adapted from the ANNIE information
extraction system, which comprises a set of IE
components included in GATE. HaSIE uses the
following processing resources:

• Tokeniser - which splits the text into indi-
vidual word, number and punctuation to-
kens.

• Sentence Splitter - which splits the text
into individual sentences.

• Part-of-Speech Tagger (Hepple, 2000) -
which produces a part-of-speech tag on
each token.

• Gazetteer - which contains lists of proper
names and keywords used by the grammar.

• Semantic Tagger - a JAPE Transducer
which annotates text with information such
as entity types.

The first three components are taken directly
from ANNIE; the gazetteer and JAPE trans-
ducer are modified versions of ANNIE com-
ponents, which reflect the specific information
needs of the project. The HaSIE gazetteer con-
tains additional information about accidents,
and words related specifically to the field of
health and safety. The HaSIE semantic tag-
ger contains hand-coded rules to identify tex-
tual patterns which are to be annotated, for ex-
ample, to find noun phrases which contain in-
formation about accidents.

4 Extracting the relevant
information

The grammar (semantic tagger) rules and
gazetteer lists used in HaSIE are determined by
corpus analysis, and are hand coded. Although

3



this seems like an onerous task, the whole sys-
tem was adapted from ANNIE, the core IE sys-
tem, in a very short space of time with mini-
mum effort. This is partly because the GATE
infrastructure and modular design makes it easy
to adapt the existing resources, and partly be-
cause a very few rules suffice to cover a wide
range of cases.

4.1 Extracting key words and phrases

The first step in the procedure is to extract spe-
cific words and phrases related to health and
safety (e.g. “SHE”, “Occupational Health”) ac-
cidents (e.g. “accident”, “injury”, “death”),
dates, company names, etc. Some of these, such
as the health and safety and accident annota-
tions, are used in later phases of the grammar
(see Section 4.2); others, such as the name of
the Company, are output directly. Figure 1
shows part of a sample text (the Debenhams
company report downloaded from the Internet)
annotated with such entities.

The annotation types extracted in this phase
are: Company, Organization, Jobtitle1, Acci-
dent, HSE, Date, Percent, Money and Number.
With the exception of Company, Accident and
HSE, these types (and the rules used to extract
them) are the same as those used in the default
ANNIE system. Although we do not use all of
these types for the final output, they are used
as temporary annotations to help us with the
summarisation process, as described in the next
section.

The following rule shows how we extract an
HSE annotation, using the result of gazetteer
lookup and part-of-speech tagging. We look for
a Jobtitle annotation (found in a previous phase
of the grammar), followed by one or more num-
bers, common nouns or adjectives (in any com-
bination) followed by something which has been
found in a gazetteer list of HSE keywords. If
this pattern is matched, then the whole pattern
is annotated as an HSE.

Rule: HSE2

1We identify this because we want to know whether
there is somebody in the company whose role is to look
after health and safety matters

(
({Jobtitle}|
{Token.category == CD}|
{Token.category == NN}|
{Token.category == JJ})+
({Lookup.majorType == hse})+

):key
-->
:key.TempHSE = {rule= HSE2}

4.2 Combining information

The second step is to use a JAPE grammar
to define rules which extract sentences or para-
graphs which describe health and safety issues
(depending on the issue). The grammar de-
pends on previous annotations such as the result
of sentence splitting, tokenisation, and the ini-
tial annotations produced. We use paragraphs
to describe more general issues, such as parts of
the document relating generally to health and
safety, and sentences to describe more specific
information, such as accident and incident rates.

4.2.1 Paragraph Annotations

In order to generate paragraphs about HSE,
we use a grammar phase consisting of hand-
coded rules. Each rule is assigned a priority,
such that the highest priority rule is matched
first (if possible). If this rule is not fired, the
rule with the next highest priority is matched,
and so on. The priorities are determined accord-
ing to how specific the rule is. The rule which
is most specific is allocated the highest priority,
because it is more likely to generate a correct
result than a general rule, which is less precise.
We give examples below of 3 rules used in the
grammar phase which generates the paragraphs
about HSE.

The first rule tries to match paragraphs con-
taining an HSE annotation (produced in Step
1), followed by one or more Accident annota-
tions, Environment annotations, or HSE Keys
(possible separated by other words). An HSE
Key is a word which in itself does not repre-
sent something related to health and safety, but
when combined with an HSE annotation sug-
gests more strongly the presence of something
related to health and safety. For example “re-

4



Figure 1: Debenhams report annotated with entities

port” on its own does not provide conclusive ev-
idence, but when found with “health” provides
a much stronger clue. “Environment” annota-
tions on their own again do not provide much
evidence, but when combined with an HSE an-
notation are again much more strongly linked
with health and safety. If the rule finds a suc-
cessful match, the whole paragraph is anno-
tated.

The second rule tries to match paragraphs
containing an HSE annotation, followed by one
or more other HSE annotations or Organiza-
tion annotations (possibly separated by other
words). An HSE annotation refers to a word
of phrase directly related to health and safety,
an Organization annotation refers to a company
name or name of another organization such as
“Health and Safety Executive” or “EC”. If the
rule finds a successful match, the whole para-
graph is annotated.

The third rule looks for an HSE Key followed
by an HSE annotation (possibly separated by
other words). If the rule finds a successful

match, the whole paragraph is annotated. Since
this is quite a general rule, it only gets fired if
both the other rules fail to match.

Some paragraphs produced are quite general,
giving non-specific information about company
policies on health and safety, e.g.

‘‘It is the policy of the Group
that each business maintains the high
standards necessary to safeguard the
health, safety and welfare of their
employees, customers and the general
public.’’

Other paragraphs may give more explicit
details, e.g.

‘‘BAA has received a RoSPA gold
award for occupational safety for
the fourth year running. The award
is given only if a consistently good
or continuously improving performance
can be demonstrated over a four-year
period.’’

5



Figure 2 shows an example of the Debenhams
report shows earlier, this time with the health
and safety paragraphs annotated.

4.2.2 Sentence Annotations

Sentences about more specific facts are also
identified, in particular relating to accidents
and illnesses, e.g.

‘‘The accident frequency ratio for
construction projects was 0.4 (0.49)
per 100,000 hours worked, less than
a third of the national accident
frequency rate in the construction
sector.’’

These are identified using rules based on en-
tities such as percentages, accident entities, and
numbers.

We currently use two rules to identify acci-
dent statistics. The first rule tries to match a
Number annotation (written in figures) followed
immediately by an Accident annotation. The
second rule is more complicated, and tries to
match an Accident annotation, followed imme-
diately by one or more Number annotations (in
figures) or Percentage annotations, followed op-
tionally by further Accident, number or percent-
age annotations. Number and Percentage an-
notations are produced during earlier phases of
the grammar, and are based largely on gazetteer
lookup and string identification (e.g. looking for
the “%” sign). If this pattern is matched, the
whole sentence is again identified.

4.3 Populating a database

Finally, the relevant annotated parts of the doc-
ument are output by the system in a comma
separated file format, which is then imported in
an Access database. Finally, the relevant anno-
tated parts of the document are output by the
system in a structured file format, which is then
imported in an Access database. The users in-
spect the summarisation results using a form in-
terface (see Figure 3) and also SQL queries (e.g.,
to find out how many companies do not dis-
cuss health and safety issues in their annual re-
ports). Prior to using the IE-based summarisa-
tion system, such analysis was performed man-

ually, which involved locating the necessary in-
formation in several hundred reports, each be-
tween 50 and 100 pages long.

5 Evaluation

Evaluations of text summarization systems can
be intrinsic or extrinsic (Sparck Jones and Gal-
liers, 1995): intrinsic evaluation measures the
content of the summary by a comparison with
an “ideal” or “target” summary. Extrinsic
evaluation measures how helpful summaries are
in the completion of a given task, for exam-
ple in question answering or text categoriza-
tion. When the evaluation is done by compar-
ing extracted textual units (sentences or para-
graphs) to a set of ideal textual units, then co-
selection is measured by precision, recall and F-
score (Firmin and Chrzanowski, 1999). While
many researchers have resisted these measures
because in generic summarization it is recog-
nized that there is no “ideal summary” (Jing et
al., 1998), in our domain-dependent IE-based
summarization, there is a clear idea of what in-
formation should be included in the summary
and which articles deal with health and safety
information.

First, we carried out formative evaluation, in-
volving input from our users, as part of the
system development cycle. We processed 36
company reports (8.9 MB of HTML text) with
HaSIE and asked one of our users to mark up in
the resulting summaries (97.6 KB) the sentences
which they found highly relevant, completely ir-
relevant, and acceptable. The results showed
that the system had identified correctly that 8
of the reports did not contain relevant informa-
tion. From the remaining 28 summaries, only
10 had some irrelevant sentences, but these sen-
tences never constituted more than 50% of the
summary. These results led to changing HaSIE
to account better for ambiguous keywords, such
as “health”, because often they occur in irrele-
vant terms like “health care” and “health insur-
ance”. After these changes were implemented,
7 of the 10 problematic summaries no longer
contained the irrelevant senteces.

After improving the system to deal with key-

6



Figure 2: Debenhams report annotated with health and safety paragraphs

Figure 3: The Access form used for report summary analysis

7



word ambiguities, we are now in the process of
creating a manually annotated HSE summary
corpus for 80 of the company reports. To this
end, we use HaSIE to bootstrap the annotation
process and then correct its results manually,
using the visual document annotation editor
from GATE. This corpus will be used to mea-
sure the system’s performance, using GATE’s
evaluation tools discussed above. Initial results,
based on ten of these documents, show that the
system achieves 80% precision and 83% recall,
which is consistent with the performance esti-
mates we obtained from the formative evalua-
tion, after we discarded the irrelevant sentences
which were no longer included after the ambi-
guity improvements.

6 Related Work

Unlike other knowledge-based approaches to
summarization that depend on rich conceptual
structures (Hahn, 1990; Rau et al., 1989), we
rely on domain-specific terminology and robust
Information Extraction techniques. Closely re-
lated to our approach is Concept Based Ab-
stracting (CBA) (Paice and Oakes, 1999) where
shallow processing is used to instantiate a se-
mantic frame containing the most important
concepts of the source document. Unlike CBA,
which produces a short textual abstract, our
system produces a set of text passages and in-
stantiates a number of slots (e.g. company,
number of employees, etc.) which are used by
an information analyst to produce health and
safety reports. Our rules for passage extrac-
tion rely on concept co-occurrence, and so are
similar to the contextual templates employed in
other IE approaches to summarization (Paice
and Jones, 1993; Saggion and Lapalme, 2000).

7 Conclusion and Future Work

In this paper we have presented how GATE
was used as a development environment for a
summarization system. Our focus was on the
adaptation of general natural language engi-
neering tools to an specific summarization prob-
lem. While we have relied completely on IE
for the purpose of this application, GATE also

allows the programmer to easily deploy meth-
ods within the framework for computing surface
level indicators of salience. In fact, several such
GATE-based modules (e.g., sentence position,
tf ∗ idf) are currently being developed by one
of the authors.

References

D.E. Appelt. 1996. The Common Pattern Specifi-
cation Language. Technical report, SRI Interna-
tional, Artificial Intelligence Center.

H. Cunningham, D. Maynard, K. Bontcheva,
V. Tablan, and C. Ursu. 2002. The GATE User
Guide. http://gate.ac.uk/.

H. Cunningham. 2002. GATE, a General Archi-
tecture for Text Engineering. Computers and the
Humanities, 36:223–254.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vilain. 1997. Mixed-
Initiative Development of Language Processing
Systems. In Proceedings of the 5th Conference on
Applied Natural Language Processing (ANLP-97).

T. Firmin and M.J. Chrzanowski. 1999. An Evalua-
tion of Automatic Text Summarization Systems.
In I. Mani and M.T. Maybury, editors, Advances
in Automatic Text Summarization, pages 325–
336.

Udo Hahn. 1990. Topic Parsing: Accounting for
Text Macro Structures in Full-Text Analysis. In-
formation Processing & Management, 26(1):135–
170.

Mark Hepple. 2000. Independence and commit-
ment: Assumptions for rapid training and exe-
cution of rule-based POS taggers. In Proceed-
ings of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-2000),
Hong Kong, October.

Hongyan Jing, Kathleen McKeown, Regina Barzi-
lay, and Michael Elhadad. 1998. Summariza-
tion Evaluation Methods: Experiments and Anal-
ysis. In Intelligent Text Summarization. Papers
from the 1998 AAAI Spring Symposium. Tech-
nical Report SS-98-06, pages 60–68, Standford
(CA), USA, March 23-25. The AAAI Press.

Inderjeet Mani. 2000. Automatic Text Summariza-
tion. John Benjamins Publishing Company.

8



Chris D. Paice and Paul A. Jones. 1993. The Iden-
tification of Important Concepts in Highly Struc-
tured Technical Papers. In R. Korfhage, E. Ras-
mussen, and P. Willett, editors, Proc. of the 16th
ACM-SIGIR Conference, pages 69–78.

Chris D. Paice and Michael P. Oakes. 1999. A
Concept-Based Method for Automatic Abstract-
ing. Technical Report Research Report 27, Li-
brary and Information Commission.

Lisa F. Rau, Paul S. Jacobs, and Uri Zernik. 1989.
Information Extraction and Text Summarization
using Linguistic Knowledge Acquisition. Infor-
mation Processing & Management, 25(4):419–
428.

H. Saggion and G. Lapalme. 2000. Concept Identi-
fication and Presentation in the Context of Tech-
nical Text Summarization. In Proceedings of the
Workshop on Automatic Summarization. ANLP-
NAACL2000, Seattle, WA, USA, 30 April. Asso-
ciation for Computational Linguistics.

K. Sparck Jones and J.R. Galliers. 1995. Evaluating
Natural Language Processing Systems: An Anal-
ysis and Review. Number 1083 in Lecture Notes
in Artificial Intelligence. Springer.

V. Tablan, C. Ursu, K. Bontcheva, H. Cunningham,
D. Maynard, O. Hamza, Tony McEnery, Paul
Baker, and Mark Leisher. 2002. A unicode-based
environment for creation and use of language re-
sources. In Proceedings of 3rd Language Resources
and Evaluation Conference. forthcoming.

9


