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Abstract

We investigate one technique to produce a summary of
an original text without requiring its full semantic in-
terpretation, but instead relying on a model of the topic
progression in the text derived from lexical chains. We
present a new algorithm to compute lexical chains in
a text, merging several robust knowledge sources: the
WordNet thesaurus, a part-of-speech tagger, shallow
parser for the identification of nominal groups, and a
segmentation algorithm. Summarization proceeds in
four steps: the original text is segmented, lexical chains
are constructed, strong chains are identified and signif-
icant sentences are extracted.

We present in this paper empirical results on the
identification of strong chains and of significant sen-
tences. Preliminary results indicate that quality in-
dicative summaries are produced. Pending problems
are identified. Plans to address these short-comings
are briefly presented.

1 Introduction

Summarization is the process of condensing a source
text into a shorter version preserving its information
content. It can serve several goals — from survey anal-
ysis of a scientific field to quick indicative notes on the
general topic of a text. Producing a quality informa-
tive summary of an arbitrary text remains a challenge
which requires full understanding of the text. Indica-
tive summaries, which can be used to quickly decide
whether a text is worth reading, are naturally easier to
produce. In this paper we investigate a method for the
production of such indicative summaries from arbitrary
text.

Sparck Jones (Jones 1993) describes summarization
as a two-step process:

1. Building from the source text a source representation;

2. Summary generation — forming a summary repre-
sentation from the source representation built in the
first step and synthesizing the output summary text.

Within this framework, the relevant question is what
information has to be included in the source represen-
tation in order to create a summary. There are three
types of source text information: linguistic, domain and

communicative. Each of these text aspects can be cho-
sen as a basis for source representation.

Summaries can be built on a deep semantic analy-
sis of the source text. For example, in (McKeown &
Radev 1995), McKeown and Radev investigate ways to
produce a coherent summary of several texts describ-
ing the same event, when a full semantic representation
of the source texts is available (in their case, they use
MUC-style systems to interpret the source texts). This
type of source abstraction is the most expressive, but
very domain dependent and hard to compute.

On the other hand, summaries can be built from a
shallow linguistic analysis of the text:

1. For example, early summarization systems (Luhn
1958) directly exploit word distribution in the source,
based on the intuition that the most frequent words
represent the most important concepts of the text.
This representation abstracts the source text into a
frequency table.

2. Another method also based on linguistic information
is the cue phrase method, which uses meta-linguistic
markers (for example, “in conclusion”, “the paper
describes”) to select important phrases (Edmunson
1969). The cue phrase method is based on the as-
sumption that such phrases provide a “rhetorical”
context for identifying important sentences.

The source abstraction in this case is a set of cue
phrases and the sentences that contain them.

3. The location method relies on the following intu-

ition — headings, sentences in the beginning and end
of the text, text formatted in bold, contain impor-
tant information to the summary (Hovy & Lin 1997;
Edmunson 1969).

All the techniques presented above are easily com-
puted and rely on shallow formal clues found in the
text. As reported in (Paice 1990), location and cue
phrases produce better results than the word frequency
method, and can be accurately computed. Recently,
(Kupiec, Pedersen, & Chen 1995), (Teufel & Moens
1997) use learning in order to combine several shallow
heuristics (cue phrase, location, sentence length, word
frequency and title), using a corpus of research papers
with manually produced abstracts.



The most severe limitation of location and cue
phrases abstraction is their dependence on the text
genre: the number of rhetorical markers changes criti-
cally from “Scientific American” articles to political ar-
ticles. Ono et al. (Ono, Sumita, & Miike 1994) reports
large differences in accuracy when building a discourse
representation from technical tutorial texts and from
newspaper texts. Techniques relying on formal clues
can be seen as high risk gamble: either you win it all,
or you lose all.

Methods that rely more on content do not suffer from
this brittleness. The method we present belongs to a
family of of techniques that rely on word distribution
and lexical links among them to approximate content
in a more robust form.

For example, word frequency is a good indicator for
words that represent important concepts — this is true
with most texts, independently of their style. A fre-
quency table, however, is too simplistic as a source rep-
resentation. It abstracts the source text into the union
of its words without considering any connection among
them. Adding information about word relations could
significantly increase source abstraction quality. As a
trivial illustration of the limitations of frequency infor-
mation, consider the following two sequences:

1. “Dr.Kenny has invented an anesthetic machine. This
device controls the rate at which an anesthetic is
pumped into the blood.”

2. “Dr.Kenny has invented an anesthetic machine. The
doctor spent two years on this research.”

“Dr.Kenny” appears once in both sequences and so
does “machine”. But sequence 1 is about the machine,
and sequence 2 is about the “doctor”. This example in-
dicates that if the source representation does not supply
information about semantically related terms, one can-
not capture the “aboutness” of the text, and therefore
the summary will not capture the main point of the
original text.

The notion of cohesion, introduced in Halliday and
Hasan (Halliday & Hasan 1976) captures part of the
intuition. Cohesion is a device for “sticking together”
different parts of the text. Cohesion is achieved through
the use of semantically related terms, co-reference, el-
lipsis and conjunctions.

Boguraev and Kennedy (Boguraev & Kennedy 1997)
present a noun-phrase extraction method that relies on
the identification of co-reference chains as an approxi-
mation of the cohesive links in the source text.

Among the different cohesion-building devices, the
most easily identifiable and the most frequent type is,
however, lexical cohesion (as discussed in (Hoey 1991)).
Lexical cohesion is created by using semantically re-
lated words. Halliday and Hasan classified lexical cohe-
sion into reiteration category and collocation category.
Reiteration can be achieved by repetition, synonyms
and hyponyms. Collocation relations specify the rela-
tion between words that tend to co-occur in the same

lexical contexts (e.g., “She works as a teacher in the
school”).

Collocation relations are more problematic for iden-
tification than reiteration, but both of these categories
are identifiable on the surface of the text. Lexical co-
hesion occurs not only between two terms, but among
sequences of related words — called lezical chains (Mor-
ris & Hirst 1991). Lexical chains provide a representa-
tion of the lexical cohesive structure of the text. Lexi-
cal chains have also been used for information retrieval
(Stairmand 1996) and for correction of malapropisms
(Hirst & St-Onge 1998 to appear). In this paper, we
investigate how lexical chains can be used as a source
representation for summarization.

Obviously, a more comprehensive identification of
all possible cohesion-building elements would only
strengthen the source text abstraction. We focus in this
work on only one form of cohesion (lexical cohesion),
other forms (co-reference and collocations) would enrich
the potential for more precise text extraction methods.

Another important dimension of the linguistic struc-
ture of a source text is captured under the related no-
tion of coherence. Coherence defines the macro-level
semantic structure of a connected discourse, while cohe-
sion creates connectedness in a non-structural manner.
Coherence is represented in terms of coherence relations
between text segments, such as elaboration, cause and
explanation. Some researchers, e.g., (Ono, Sumita, &
Miike 1994) and (Marcu 1997), use discourse structure
(encoded using RST (Mann & Thompson 1988)) as
a source representation for summarization. Discourse
representation can be used to prune a hierarchical tree
of discourse segments and keep only the nucleus of the
discourse. In contrast to lexical cohesion, however, co-
herence is difficult to identify without complete under-
standing of the text and complex inferences. Consider
the following example from (Jerry 1978): “John can
open the safe. He knows the combination.”

Morris and Hirst (Morris & Hirst 1991) show that the
relation between these two sentences can be interpreted
as elaboration or as explanation, depending on context,
knowledge and beliefs. As a consequence, methods that
attempt to approximate discourse structure based on
discourse markers only, can produce an imprecise dis-
course structure abstraction, and also suffer from the
brittleness of the formal methods indicated above.

There is a close connection between discourse struc-
ture and cohesion. Related words tend to co-occur
within a discourse unit of the text. So cohesion is one
of the surface indicators of discourse structure and lex-
ical chains can be used to identify it. Other indicators
can be used to identify discourse structure as well (con-
nectives, paragraph markers, tense shifts). Here again,
merging discourse structure approaches with lexical co-
hesion techniques should lead to further improvement
of the source text abstraction.

In this paper, we investigate the use of lexical chains
as a model of the source text for the purpose of pro-
ducing a summary. As already explained, other aspects



of the source text need to be integrated in the text
representation to produce quality summaries (discourse
structure, other forms of cohesion, domain knowledge);
but we want to investigate empirically how far one can
go by exploiting mainly lexical chains. In the rest
of the paper we first present our algorithm for lexi-
cal chain construction (Section 2). We then present
empirical results on the identification of strong chains
among the possible candidates produced by our algo-
rithm (Section 3), and describe how lexical chains are
used to identify significant sentences within the source
text and eventually produce a summary. Finally, we
present preliminary evaluation of the results obtained
by our method (Section 4).

2 Algorithm for Chain Computing

One of the chief advantages of lexical cohesion is that it
is an easily recognizable relation, enabling lexical chain
computation. The first computational model for lexical
chains was presented in the work of Morris and Hirst
(Morris & Hirst 1991). They define lexical cohesion re-
lations in terms of categories, index entries and pointers
in Roget’s Thesaurus. Morris and Hirst evaluated that
their relatedness criterion covered over 90% of the in-
tuitive lexical relations. Chains are created by taking a
new text word and finding a related chain for it accord-
ing to relatedness criteria. Morris and Hirst introduce
the notions of “activated chain” and “chain returns”,
to take into account the distance between occurrences
of related words. They also analyze factors contribut-
ing to the strength of a chain — repetition, density and
length. Morris and Hirst did not implement their algo-
rithm, because there was no machine-readable version
of Roget’s Thesaurus at that time.

One of the drawbacks of their approach was that they
did not require the same word to appear with the same
sense in its different occurrences for it to belong to a
chain. For semantically ambiguous words, this can lead
to confusions (e.g., mixing two senses of table as a piece
of furniture or an array). Note that choosing the appro-
priate chain for a word is equivalent to disambiguating
this word in context, which is a well-known difficult
problem in text understanding.

More recently, two algorithms for the calculation
of lexical chains have been presented in (Hirst & St-
Onge 1998 to appear) and (Stairmand 1996). Both
of these algorithms use the WordNet lexical database
for determining relatedness of the words (Miller et al.
1990). Senses in the WordNet database are repre-
sented relationally by synonym sets (‘synsets’) — which
are the sets of all the words sharing a common sense.
For example two senses of “computer” are represented
as: {calculator, reckoner, figurer, estimator, computer}
(i.e., a person who computes) and {computer, data
processor, electronic computer, information processing
system}. WordNet contains more than 118,000 dif-
ferent word forms. Words of the same category are
linked through semantic relations like synonymy and

hyponymy.

Polysemous words appear in more than one synsets
(for example, computer occurs in two synsets). Approx-
imately 17% of the words in WordNet are polysemous.
But, as noted by Stairmand, this figure is very mis-
leading: “a significant proportion of WordNet nouns
are Latin labels for biological entities, which by their
nature are monosemous and our experience with the
news-report texts we have processed is that approxi-
mately half of the nouns encountered are polysemous.”
(Stairmand 1996).

Generally, a procedure for constructing lexical chains
follows three steps:

1. Select a set of candidate words;

2. For each candidate word, find an appropriate chain
relying on a relatedness criterion among members of
the chains;

3. If it is found, insert the word in the chain and update
it accordingly.

An example of such a procedure is represented by
Hirst and St-Onge (henceforth, H&S). In the prepro-
cessing step, all words that appear as a noun entry in
WordNet are chosen. Relatedness of words is deter-
mined in terms of the distance between their occur-
rences and the shape of the path connecting them in
the WordNet thesaurus. Three kinds of relations are
defined: extra-strong (between a word and its repeti-
tion), strong (between two words connected by a Word-
Net relation) and medium-strong when the link between
the synsets of the words is longer than one (only paths
satisfying certain restrictions are accepted as valid con-
nections).

The maximum distance between related words de-
pends on the kind of relation: for extra-strong relations,
there is not limit in distance, for strong relations, it is
limited to a window of seven sentences; and for medium-
strong relations, it is within three sentences back.

To find a chain in which to insert a given candidate
word, extra-strong relations are preferred to strong-
relations and both of them are preferred to medium-
strong relations. If a chain is found, then the candidate
word is inserted with the appropriate sense, and the
senses of the other words in the receiving chain are up-
dated, so that every word connected to the new word in
the chain relates to its selected senses only. If no chain
is found, then a new chain is created and the candidate
word is inserted with all its possible senses in WordNet.

The greedy disambiguation strategy implemented in
this algorithm has some limitations illustrated by the
following example:

Mr. Kenny is the person that invented an anes-
thetic machine which uses micro-computers to
control the rate at which an anesthetic is pumped
into the blood. Such machines are nothing new.
But his device uses two micro-computers to
achieve much closer monitoring of the pump feed-
ing the anesthetic into the patient.



According to H&S’s algorithm, the chain for the word
“Mr.” is first created [lex "Mr.", sense {mister,
Mr.}]. “Mr.” belongs only to one synset, so it is dis-
ambiguated from the beginning. The word “person” is
related to this chain in the sense “a human being” by a
medium-strong relation, so the chain now contains two
entries:

[lex "Mr.", sense {mister, Mr.}]

[lex "person", sense {person, individual,
someone, man, mortal, human, soul}].
When the algorithm processes the word “machine”, it
relates it to this chain, because “machine” in the first
WordNet sense (“an efficient person”) is a holonym of
“person” in the chosen sense. In other words, “ma-
chine” and “person” are related by a strong relation.
In this case, “machine” is disambiguated in the wrong
way, even though after this first occurrence of “ma-
chine”, there is strong evidence supporting the selection
of its more common sense: “micro-computer”, “device”
and “pump” all point to its correct sense in this context
— “any mechanical or electrical device that performs or

assists in the performance”.

This example indicates that disambiguation cannot
be a greedy decision. In order to choose the right sense
of the word the ‘whole picture’ of chain distribution in
the text must be considered. We propose to develop a
chaining model according to all possible alternatives of
word senses and then choose the best one among them.

Let us illustrate this method on the above exam-
ple. First, a node for the word “Mr.” is created [lex
"Mr.", sense {mister, Mr.}]. The next candidate
word is “person”. It has two senses: “human being”
(person — 1) and “grammatical category of pronouns
and verb forms” (person — 2). The choice of sense for
“person” splits the chain world into two different inter-
pretations as shown in Figure 1.

@{Mr.,Mister} @ {Mr., Mister}

Person

Person

{ person,,
individual,
someone, ...

{ person,}

Figure 1: Step 1, Interpretations 1 and 2

We define a component as a list of interpretations that
are exclusive of each other. Component words influence
each other in the selection of their respective senses.

The next candidate word “anesthetic” is not related
to any word in the first component, so we create a new
component for it with a single interpretation.

The word “machine” has 5 senses machine; to
machines. In its first sense, “an efficient person”, it is
related to the senses “person” and “Mr.”. It therefore
influences the selection of their senses, thus “machine”
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Figure 2: Step 2, Interpretation 1
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Figure 3: Step 2, Interpretation 2

has to be inserted in the first component. After its in-
sertion the picture of the first component becomes the
one shown in Figures 2 to 5.

But if we continue the process and insert the words
“micro-computer”, “device” and “pump”, the number
of alternatives greatly increases. The strongest inter-
pretations are given in Figures 6 and 7.

Under the assumption that the text is cohesive, we
define the best interpretation as the one with the most
connections (edges in the graph). In this case, the sec-
ond interpretation at the end of Step 3 is selected, which
predicts the right sense for “machine”. We define the
score of an interpretation as the sum of its chain scores.
A chain score is determined by the number and weight
of the relations between chain members. Experimen-
tally, we fixed the weight of reiteration and synonym
to 10, of antonym to 7, and of hyperonym and holonym
to 4. Our algorithm computes all possible interpreta-
tions, maintaining each one without self contradiction.
When the number of possible interpretations is larger

{Mr., mister}

{ person,, individual,
someone, ... }

{ machine,... maching}

(Mr)
Person

Figure 4: Step 2, Interpretation 3
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Figure 5: Step 2, Interpretation 4
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Figure 6: Step 3, Interpretation 1

than a certain threshold, we prune the weak interpreta-
tions according to this criteria, this is to prevent expo-
nential growth of memory usage. In the end, we select
from each component the strongest interpretation.

In summary, our algorithm differs from Hé&S’s al-
gorithm in that it introduces, in addition to the re-
latedness criterion for membership to a chain, a non-
greedy disambiguation heuristic to select the appropri-
ate senses of chain members.

The two algorithms differ in two other major aspects:
the criterion for the selection of candidate words and
the operational definition of a text unit.

We choose as candidate words simple nouns and noun
compounds. As mentioned above, nouns are the main
contributors to the “aboutness” of a text, and noun
synsets dominate in WordNet. Both (Stairmand 1996)
and H&S rely only on nouns as candidate words. In
our algorithm, we rely on the results of Brill’s part-of-
speech tagging algorithm to identify nouns (Brill 1992),
while H&S do not go through this step and only select
tokens that happen to occur as nouns in WordNet. Us-
ing WordNet to identify nouns can lead to erroneous
situations where a word that is used as a verb will be
identified as a noun, e.g., “walk”.

In addition, we extend the set of candidate words to
include noun compounds. We first empirically evaluated
the importance of noun compounds by taking into ac-
count the noun compounds explicitly present in Word-
Net (some 50,000 entries in WordNet are noun com-
pounds such as “sea level” or collocations such as “dig-

{PC, micro-
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erson, @ 3
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Figure 7: Step 3, Interpretation 2

ital computer”). However, English includes a produc-
tive system of noun compounds, and in each domain,
new noun-compounds and collocations not present in
WordNet play a major role.

We addressed the issue, by using a shallow parser (de-
veloped by Ido Dagan’s team at Bar-Ilan University) to
identify noun-compounds using a simple characteriza-
tion of noun sequences. This has two major benefits:
(1) it identifies important concepts in the domain (for
example, in a text on “quantum computing”, the main
token was the noun compound “quantum computing”
which was not present in WordNet); (2) it eliminates
words that occur as modifiers as possible candidates
for chain membership. For example, when “quantum
computing” is selected as a single unit, the word “quan-
tum” is not selected. This is beneficial because in this
example, the text was not about “quantum”, but more
about computers. When a noun compound is selected,
the relatedness criterion in WordNet is used by consid-
ering its head noun only. Thus, “quantum computer”
is related to “machine” as a “computer”.

The second difference in our algorithm lies in the
operational definition we give to the notion of text
unit. We use as text units the segments obtained from
Hearst’s algorithm of text segmentation (Hearst 1994).
We build chains in every segment according to relat-
edness criteria, and in a second stage, we merge chains
from the different segments using much stronger criteria
for connectedness only: two chains are merged across a
segment boundary only if they contain a common word
with the same sense. Our intra-segment relatedness cri-
terion is less strict: members of the same synsets are
related, a node and its offspring in the hyperonym graph
are related, siblings in the hyperonym graph are related
only if the length of the path is less than a threshold.

The relation between text segmentation and lexical
chains is delicate, since they are both derived from par-
tially common sources of knowledge: lexical distribu-
tion and repetitions. In fact, lexical chains could serve
as a basis for an algorithm for segmentation. We have
found empirically, however, that Hearst’s algorithm be-
haves well on the type of texts we checked and that



it provides a solid basis for the construction of lexical
chains.

3 Building Summaries Using
Lexical Chains

We now investigate how lexical chains can serve as a
source representation of the original text to build a
summary. The next question is how to build a sum-
mary representation from this source representation.

The most prevalent discourse topic will play an im-
portant role in the summary. We first present the in-
tuition why lexical chains are a good indicator of the
central topic of a text. Given an appropriate measure
of strength, we show that picking the concepts repre-
sented by strong lexical chains gives a better indication
of the central topic of a text than simply picking the
most frequent words in the text (which forms the zero-
hypothesis).

For example, we show in Appendix A a sample text
about Bayesian Network technology. There, the con-
cept of network is denoted by the words “network”
with 6 occurrences, “net” with 2, and “system” with
4. But the summary representation has to reflect that
all these words represent the same concept. Otherwise,
the summary generation stage would extract informa-
tion separately for each term. The chain representation
approach avoids completely this problem, because all
these terms occur in the same chain, which reflects that
they represent the same concept.

An additional argument for the chain representation
as opposed to a simple word frequency model is the
case when a single concept is represented by a num-
ber of words, each with relatively low frequency. In
the same Bayesian Network sample text, the concept of
“information” is denoted by the words “information”
(3), “datum” (2), “knowledge” (3), “concept” (1) and
“model” 1. In this text, “information” is a more im-
portant concept than “computer” which occurs 4 times.
Because the “information” chain combines the number
of occurrences of all its members, it can overcome the
weight of the single word “computer”.

Scoring Chains

In order to use lexical chains as outlined above, one
must first identify the strongest chains among all those
that are produced by our algorithm. As is frequent in
summarization, there is no formal way to evaluate chain
strength (as there is no formal method to evaluate the
quality of a summary). We therefore rely on an empir-
ical methodology. We have developed an environment
to compute and graphically visualize lexical chains to
evaluate experimentally how they capture the main top-
ics of the texts. Figure 8 shows how lexical chains are
visualized to help human testers evaluate their impor-
tance.

We have collected data for a set of 30 random
texts extracted from popular magazines (from “The
Economist” and “Scientific American”), all of them

condi tioﬁ)

Cremrmiaue
knowledge

information

Figure 8: Visual representation of lexical chains

are popular science genre. For each text, we manu-
ally ranked chains in terms of relevance to the main
topics. We then computed different formal measures
on the chains, including: chain length, distribution in
the text, text span covered by the chain, density, graph
topology (diameter of the graph of the words) and num-
ber of repetitions. The results on our data set indicate
that only the following parameters are good predictors
of the strength of a chain:

Length: The number of occurrences of members of the
chain.

Homogeneity index: 1 - the number of distinct oc-
currences divided by the length.

We designed a score function for chains as:

Score(Chain) = Length x HomogeneityIndex
When ranking chains according to their score, we eval-
uated that strong chains are those which satisfy our
“Strength Criterion”:

Score(Chain) > Average(Scores) +

2 % StandardDeviation(Scores)

These are preliminary results but they are strikingly
confirmed by our experience on the 30 texts we ana-
lyzed extensively. We have experimented with different
normalization methods for the score function, but they
do not seem to improve the results. We plan to extend
the empirical analysis in the future and to use formal
learning methods to determine a good scoring function.

The average number of strong chains selected by this
selection method was 5 for texts of 1055 words on aver-
age (474 words minimum, 3198 words maximum), when
32 chains were originally generated on average. The
strongest chains of the sample text are presented in Ap-
pendix B.

Extracting Significant Sentences

Once strong chains have been selected, the next step of
the summarization algorithm is to extract full sentences
from the original text based on chain distribution.

We investigated three alternatives for this step:

Heuristic 1 For each chain in the summary represen-



tation choose the sentence that contains the first ap-
pearance of a chain member in the text.

This heuristic produced the following summary for
the text shown in Appendix:

When Microsoft Senior Vice President Steve
Ballmer first heard his company was planning to
make a huge investment in an Internet service
offering movie reviews and local entertainment
information in major cities across the nation,
he went to Chairman Bill Gates with his con-
cerns. Microsoft’s competitive advantage, he re-
sponded, was its expertise in Bayesian networks.
Bayesian networks are complex diagrams that
organize the body of knowledge in any given area
by mapping out cause — and — effect relation-
ships among key variables and encoding them
with numbers that represent the extent to which
one variable is likely to affect another.
Programmed into computers, these systems can
automatically generate optimal predictions or
decisions even when key pieces of information
are missing.

When Microsoft in 1993 hired FEric Horvitz,
David Heckerman and Jack Breese, pioneers in
the development of Bayesian systems, colleagues
in the field were surprised.

The problem with this approach is that all words in
a chain reflect the same concept, but to a different
extent. For example, in the AI chain, (Appendix B,
Chain 3) the token “technology” is related to the con-
cept “AI”, but the word “field” is more suitable to
represent the main topic “AI” in the context of the
text. That is, not all chain members are good rep-
resentatives of the topic (even though they all con-
tribute to its meaning).

We therefore defined a criterion to evaluate the ap-
propriateness of a chain member to represent its chain
based on its frequency of occurrence in the chain. We
found experimentally that such words, call them rep-
resentative words, have a frequency in the chain no
less than the average word frequency in the chain.
For example, in the third chain the representative
words are “field” and “AI”.

Heuristic 2 We therefore defined a second heuristic
based on the notion of representative words: For each
chain in the summary representation, choose the sen-
tence that contains the first appearance of a repre-
sentative chain member in the text.

In this special case this heuristic gives the same result
as the first one.

Heuristic 3 Often, the same topic is discussed in a
number of places in the text, so its chain is dis-
tributed across the whole text. Still, in some text
unit, this global topic is the central topic (focus) of
the segment. We try to identify this unit and extract
sentences related to the topic from this segment (or
successive segments) only.

We characterize this text unit as a cluster of succes-
sive segments with high density of chain members.
Our third heuristic is based on this approach.

For each chain, find the text unit where the chain is
highly concentrated. Extract the sentence with the
first chain appearance in this central unit. Concen-
tration is computed as the number of chain members
occurrences in a segment divided by the number of
nouns in the segment. A chain has high concentra-
tion if its concentration is the maximum of all chains.
A cluster is a group of successive segments such that
every segment contains chain members.

Note that in all these three techniques only one
sentence is extracted for each chain (regardless of its
strength).

For most texts we tested, the first and second tech-
niques produce the same results, but when they are
different, the output of the second technique is better.
Generally, the second technique produces the best sum-
mary. We checked these methods on our 30 texts data
set. Surprisingly, the third heuristic, which intuition
predicts as the most sophisticated, gives the least in-
dicative results. This may be due to several factors:
our criteria for ‘centrality’ or ‘clustering’ may be in-
sufficient or, more likely, the problem seems to be re-
lated to the interaction with text structure. The third
heuristic tends to extract sentences from the middle
of the text and to extract several sentences from dis-
tant places in the text for a single chain. The com-
plete results of our experiments are available on-line at
http://www.cs.bgu.ac.il/research/projects/
summarization-test/.

4 Evaluation of the Method
Description of the Experiment

Most evaluations of summarization systems use an in-
trinsic method (Edmunson 1969; Paice 1990; Kupiec,
Pedersen, & Chen 1995; Marcu 1997; Salton et al. 1997,
Ono, Sumita, & Miike 1994). The typical approach is
to create an “ideal” summary, either written by profes-
sional abstractors or by merging summaries provided by
multiple human subjects using methods such as major-
ity opinion, union, or intersection. The output of the
summarizers is then compared with the “ideal” sum-
mary. Precision and recall are used to measure the
quality of the summary.

We designed a similar experiment to evaluate the
summaries obtained by the lexical-chain based tech-
nique with an ideal summary constructed by human
subjects. We also compared the summaries with those
obtained by the Microsoft Summarizer available in
Word97.

To study agreement among human subjects, 40 doc-
uments were selected; for each document, 10 summaries
were constructed by 5 human subjects using sentence
extraction. Each subject constructed 2 summaries of a



document: one at 10% length and the other at 20%?!.
For convenience, percent of length was computed in
terms of number of sentences.

In addition to these 10 human-constructed sum-
maries, we built 10% and 20% summaries using our sys-
tem and Microsoft’s summarizer (embedded in Word).
The documents were selected from the TREC collection
(Harman 1994). They are news articles on computers,
terrorism, hypnosis and nuclear treaties. The average
length of the articles is 30 sentences. Human subjects
are graduate students in the Department of Computer
Science at Columbia University, Cornell University, and
Beer-Sheva University in Israel.

Agreement Among Human Subjects

We measured agreement among human subjects us-
ing percent agreement, a metric defined by (Gale,
Church, & Yarowsky 1992) for the sense disambigua-
tion task, but also used in other applications such as
discourse segmentation (Passonneau & Litman 1993;
Hearst 1994). Percent agreement is the ratio of ob-
served agreements with the majority opinion to pos-
sible agreements with the majority opinion. For our
experiments, agreement among 3 or more subjects is a
majority opinion. The total possible agreements with
the majority opinion is the number of human subjects
times the number of sentences in a document. Observed
agreement is equal to the number of times that a sub-
ject’s decision agrees with the majority opinion, includ-
ing both the decision to extract the sentence and not to
extract the sentence. The results are shown in Table 1.

Length | Avg. Agreement | Max | Min
10% 96% 100% | 87%
20% 90% 100% | 83%

Table 1: Agreement among 5 human subjects for 40
documents.

The percent agreement in our experiment is surpris-
ingly high compared to results presented by other re-
searchers. (Marcu 1997) found percent agreement of
13 judges over 5 texts from Scientific American is 71%.
(Rath, Resnick, & Savage 1961) found that extracts
selected by four different human judges had only 25%
overlap. (Salton et al. 1997) found that the most im-
portant 20% paragraphs extracted by 2 subjects have
only 46% overlap. The two most probable reasons for
this high percent agreement are the style of the TREC
articles and our restriction on uniform length.

Statistical Significance

Using the same methodology as in (Passonneau &
Litman 1993; Hearst 1994; Marcu 1997), we applied

!According to (Jing et al. 1998) ideal summary based
evaluation is extremely sensitive to the required summary
length. Therefore, we use an evaluation of 10% and 20%
summaries in order to decrease the bias of the length factor.

Microsoft Lexical Chain
Prec | Recall | Prec | Recall
10% 33 37 61 67
20% 32 39 47 64

Table 2: Evaluation of summarization programs.

Cochran’s test to our data. For our application,
Cochran’s test evaluates the null hypothesis that the
total number of human subjects extracting the same
sentence is randomly distributed. Our results show
that the agreement among subjects is highly significant.
That is, the probability that human subjects extract the
same sentence is much higher than would be expected
by chance. For all 40 documents, the probability is very
low: p < 1076.

Systems Comparison

The “ideal” summary was constructed by taking the
majority opinion of five human summaries at the same
length, the precision and recall were used as similarity
measures. The results are shown in Table 2.

This data demonstrates a notable improvement above
a commercially available summarizer both in precision
and in recall. Results are significantly better for the
10%-length summaries than for the 20%. These re-
sults indicate the strong potential of lexical chains as a
knowledge source for sentence extraction. As discussed
in the introduction, we expect that combining lexical
chains with additional knowledge sources will improve
the precision and recall of the system.

More extensive evaluation results, both intrinsic and
task-based are provided in (Jing et al. 1998) and (Barzi-
lay 1997).

5 Limitations and Future Work

We have identified the following main problems with
our method:

e Sentence granularity: all our methods extract whole
sentences as single units. This has several draw-
backs: long sentences have significantly higher like-
lihood to be selected, they also include many con-
stituents which would not have been selected on their
own merit. The alternative is extremely costly: it in-
volves some parsing of the sentences, the extraction
of only the central constituents from the source text
and the regeneration of a summary text using text
generation techniques.

e Extracted sentences contain anaphora links to the
rest of the text. This has been investigated and ob-
served by (Paice 1990). Several heuristics have been
proposed in the literature to address this problem
(Paice 1990), (Paice & Husk 1991). The strongest
seems to be to include together with the extracted
sentence the one immediately preceding it. Unfortu-
nately, when we select the first sentence in a segment,



the preceding sentence does not belong to the para-
graph and its insertion has a detrimental effect on the
overall coherence of the summary. A preferable solu-
tion would be to replace anaphora with their referent,
but again this is an extremely costly solution.

e Our method does not provide any way to control the
length and level of detail of the summary. In all of
the methods, we extract one sentence for each chain.
The number of strong chains remains small (around
5 or 6 for the texts we have tested, regardless of their
length), and the remaining chains would introduce
too much noise to be of interest in adding details. The
best solution seems to be to extract more material for
the strongest chains.

The method presented in this paper is obviously par-
tial in that it only considers lexical chains as a source
representation, and ignores any other clues that could
be gathered from the text. Still, we have achieved re-
sults of a quality superior to that of summarizers usu-
ally employed in commercial systems such as search sys-
tems on the World Wide Web on the texts we investi-
gated.
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A Bayesian Networks Text

When Microsoft Senior Vice President Steve Ballmer first heard
his company was planning to make a huge investment in an In-
ternet service offering movie reviews and local entertainment
information in major cities across the nation, he went to Chair-
man Bill Gates with his concerns.

After all, Ballmer has billions of dollars of his own money in
Microsoft stock, and entertainment isn't exactly the company’s
strong point.

But Gates dismissed such reservations. Microsoft's compet-
itive advantage, he responded, was its expertise in Bayesian
networks.

Asked recently when computers would finally begin to under-
stand human speech, Gates began discussing the critical role
of “Bayesian” systems.

Ask any other software executive about anything Bayesian and
you're liable to get a blank stare.

Is Gates onto something? Is this alien-sounding technology
Microsoft’'s new secret weapon?

Bayesian networks are complex diagrams that organize the
body of knowledge in any given area by mapping out cause-and-
effect relationships among key variables and encoding them
with numbers that represent the extent to which one variable
is likely to affect another.

Programmed into computers, these systems can automatically
generate optimal predictions or decisions even when key pieces
of information are missing.

When Microsoft in 1993 hired Eric Horvitz, David Heckerman
and Jack Breese, pioneers in the development of Bayesian sys-
tems, colleagues in the field were surprised. The field was still
an obscure, largely academic enterprise.

Today the field is still obscure. But scratch the surface of
a range of new Microsoft products and you're likely to find
Bayesian networks embedded in the software. And Bayesian
nets are being built into models that are used to predict oil and
stock prices, control the space shuttle and diagnose disease.
Artificial intelligence (Al) experts, who saw their field dis-
credited in the early 1980s after promising a wave of “think-
ing” computers that they ultimately couldn’t produce, believe
widening acceptance of the Bayesian approach could herald a
renaissance in the field.

Bayesian nets provide “an overarching graphical framework”
that brings together diverse elements of Al and increases the
range of its likely application to the real world, says Michael
Jordon, professor of brain and cognitive science at the Mas-
sachusetts Institute of Technology.

Microsoft is unquestionably the most aggressive in exploiting
the new approach. The company offers a free Web service that
helps customers diagnose printing problems with their comput-
ers and recommends the quickest way to resolve them. Another
Web service helps parents diagnose their children’s health prob-
lems.

The latest version of Microsoft Office software uses the tech-
nology to offer a user help based on past experience, how the
mouse is being moved and what task is being done.

“If his actions show he is distracted, he is likely to need help,”
Horvitz says. “If he's been working on a chart, chances are he
needs help formatting the chart”.

“Gates likes to talk about how computers are now deaf, dumb,
blind and clueless. The Bayesian stuff helps deal with the clue-
less part,” says Daniel T. Ling, director of Microsoft's research
division and a former IBM scientist.

Horvitz and his two Microsoft colleagues, who were then class-
mates at Stanford University, began building Bayesian networks
to help diagnose the condition of patients without turning to
surgery.

The approach was efficient, says Horvitz, because you could
combine historical data, which had been meticulously gath-
ered, with the less precise but more intuitive knowledge of ex-
perts on how things work to get the optimal answer given the
information available at a given time.

Horvitz, who with two colleagues founded Knowledge Industries
to develop tools for developing Bayesian systems, says he and
the others left the company to join Microsoft in part because
they wanted to see their theoretical work more broadly applied.
Although the company did important work for the National
Aeronautics and Space Administration and on medical diag-
nostics, Horvitz says, “It's not like your grandmother will use
it".

Microsoft's activities in the field are now helping to build a
groundswell of support for Bayesian ideas.

People look up to Microsoft,” says Pearl, who wrote one of the
key early texts on Bayesian networks in 1988 and has become
an unofficial spokesman for the field. “They've given a boost
to the whole area”.

Microsoft is working on techniques that will enable the
Bayesian networks to “learn” or update themselves automat-
ically based on new knowledge, a task that is currently cum-
bersome.

The company is also working on using Bayesian techniques to
improve upon popular Al approaches such as “data mining”
and “collaborative filtering” that help draw out relevant pieces



of information from massive databases. The latter will be used
by Microsoft in its new online entertainment service to help
people identify the kind of restaurants or entertainment they
are most likely to enjoy.

B Bayesian Network Text: the
Strongest Chains
The Criterion is 3.58, here are the five strong chains:

CHAIN 1: Score = 14.0
microsoft: 10 concern: 1 company: 6
entertainment-service: 1 enterprise: 1
massachusetts-institute: 1
CHAIN 2: Score = 9.0
bayesian-system: 2 system: 2 bayesian-net: 2
network: 1 bayesian-network: 5 weapon: 1
CHAIN 3: Score = 7.0
ai: 2 artificial-intelligence: 1
field: 7 technology: 1 science: 1
CHAIN J: Score = 6.0
technique: 1 bayesian-technique: 1 condition: 1
datum: 2 model: 1 information: 3 area: 1
knowledge: 3
CHAIN 5: Score = 3.0
computer: 4
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