
c© 2002 Association for Computational Linguistics

Using Hidden Markov Modeling to
Decompose Human-Written Summaries

Hongyan Jing∗

Lucent Technologies, Bell Laboratories

Professional summarizers often reuse original documents to generate summaries. The task of sum-
mary sentence decomposition is to deduce whether a summary sentence is constructed by reusing
the original text and to identify reused phrases. Specifically, the decomposition program needs to
answer three questions for a given summary sentence: (1) Is this summary sentence constructed
by reusing the text in the original document? (2) If so, what phrases in the sentence come from
the original document? and (3) From where in the document do the phrases come? Solving the
decomposition problem can lead to better text generation techniques for summarization. Decom-
position can also provide large training and testing corpora for extraction-based summarizers.
We propose a hidden Markov model solution to the decomposition problem. Evaluations show
that the proposed algorithm performs well.

1. Introduction

We define a problem referred to as summary sentence decomposition. The goal of a de-
composition program is to determine the relations between phrases in a summary
and phrases in the corresponding original document. Our analysis of a set of human-
written summaries has indicated that professional summarizers often rely on cutting
and pasting text from the original document to produce summaries. Unlike most cur-
rent automatic summarizers, however, which extract sentences or paragraphs without
any modification, professional summarizers edit the extracted text using a number of
revision operations.

Decomposition of human-written summaries involves analyzing a summary sen-
tence to determine how it is constructed by humans. Specifically, we define the sum-
mary sentence decomposition problem as follows: Given a human-written summary
sentence, a decomposition program needs to answer three questions: (1) Is this sum-
mary sentence constructed by reusing the text in the original document? (2) If so, what
phrases in the sentence come from the original document? and (3) From where in the
document do the phrases come? Here, the term phrase refers to any sentence compo-
nent that is cut from the original document and reused in the summary. A phrase can
be at any granularity, from a single word to a complicated verb phrase to a complete
sentence.

There are two primary benefits of solving the summary sentence decomposition
problem. First, decomposition can lead to better text generation techniques in summa-
rization. Most domain-independent summarizers rely on simple extraction to produce
summaries, even though extracted sentences can be incoherent, redundant, or mis-
leading. By decomposing human-written sentences, we can deduce how summary sen-

∗ 600 Mountain Avenue, Murray Hill, NJ 07974. E-mail: hjing@research.bell-labs.com. The work reported
here was completed while the author attended Columbia University.

528

Computational Linguistics Volume 28, Number 4

tences are constructed by humans. By learning how humans use revision operations to
edit extracted sentences, we can develop automatic programs to simulate these revision
operations and build a better text generation system for summarization. Second, the
decomposition result also provides large corpora for extraction-based summarizers. By
aligning summary sentences with original-document sentences, we can automatically
annotate the most important sentences in an input document. By doing this automat-
ically, we can afford to mark content importance for a large set of documents, thereby
providing valuable training and testing data sets for extraction-based summarizers.

We propose a hidden Markov model solution to the summary sentence decompo-
sition problem. In the next section, we show by example the revision operations used
by professional summarizers. In Section 3, we present our solution to the decompo-
sition problem by first mathematically formulating the decomposition problem and
then presenting the Hidden Markov Model. In Section 4, we present three evaluation
experiments and their results. Section 5 describes applications, and Section 6 discusses
related work.

2. Revision Operations

We analyzed a set of articles to observe how they were summarized by human abstrac-
tors. This set included 15 news articles on telecommunications, 5 articles on medical
issues, and 10 articles in the legal domain. Although individual articles related to spe-
cific domains, they covered a broad range of topics and differed in writing style and
structure even within the same domain. The telecommunications articles were collected
using the free daily news service Communications-Related Headlines provided by the
Benton Foundation 〈http://www.benton.org〉. The abstracts of these articles from var-
ious newspapers were written by staff writers at Benton. The medical news articles
were collected from HIV/STD/TB Prevention News Update, provided by the Cen-
ter for Disease Control (CDC) 〈http://www.cdcnpin.org/news/prevnews.htm〉. As a
public service, CDC provides daily staff-written synopses of key scientific articles and
lay media reports on HIV/AIDS. The legal articles from the New York Law Journal de-
scribe court decisions on lawsuits that have been summarized by the journal’s editors.

From the corpus studied, we found that human abstractors almost universally
reuse text in the original document for producing a summary of that document. This
finding is consistent with Endres-Niggemeyer et al. (1998), which stated that pro-
fessional abstractors often rely on cutting and pasting the original text to produce
summaries.

Based on careful analysis of human-written summaries, we have defined six re-
vision operations that can be used to transform a sentence in an article into a sum-
mary sentence in a human-written abstract: sentence reduction, sentence combination,
syntactic transformation, lexical paraphrasing, generalization or specification, and re-
ordering. The following sections examine each of these operations in turn.

1. Sentence reduction. In sentence reduction, nonessential phrases are
removed from a sentence, as in the following example (italics in the
source sentence mark material that is removed):1

Document sentence: When it arrives sometime next year in new TV
sets, the V-chip will give parents a new and potentially revolu-

1 All the examples in this section were taken from the 30 articles we analyzed; the summary sentences
are actual examples found in human-written abstracts.

529

Jing Decomposing Human-Written Summaries

tionary device to block out programs they don’t want their chil-
dren to see.
Summary sentence: The V-chip will give parents a device to
block out programs they don’t want their children to see.

The deleted material can be at any granularity: a word, a phrase, or a
clause. Multiple components can be removed from a single sentence.

2. Sentence combination. In sentence combination, material from a few
sentences is merged into a single sentence. This operation is typically
used together with sentence reduction, as illustrated in the following
example, which also employs paraphrasing (italics in the source
sentences mark material that is removed; italics in the summary sentence
mark material that is added):

Document sentence 1: But it also raises serious questions about
the privacy of such highly personal information wafting about the
digital world.
Document sentence 2: The issue thus fits squarely into the
broader debate about privacy and security on the Internet,
whether it involves protecting credit card numbers or keeping children
from offensive information.
Summary sentence: But it also raises the issue of privacy of such
personal information and this issue hits the nail on the head in
the broader debate about privacy and security on the Internet.

3. Syntactic transformation. Syntactic transformation involves changing the
syntactic structure of a sentence. In both sentence reduction and sentence
combination, syntactic transformations may also be involved. In the
following example, the sentence structure was changed from the
causative clause structure in the original to the conjunctive structure in
the summary. The subject of the causative clause and the subject of the
main clause were combined during this operation.

Document sentence: Since annoy.com enables visitors to send
unvarnished opinions to political and other figures in the news,
the company was concerned that its activities would be banned
by the statute.
Summary sentence: Annoy.com enables visitors to send unvar-
nished opinions to political and other figures in the news and
feared the law could put them out of business.

4. Lexical paraphrasing. In lexical paraphrasing, phrases are replaced with
their paraphrases. For instance, in the example in item (2), the summary
sentences substituted fit squarely into with a more picturesque description
hits the nail on the head.

5. Generalization or specification. In generalization (specification), phrases or
clauses are replaced with more general (specific) descriptions, as in the

530

Computational Linguistics Volume 28, Number 4

following examples:

Generalization: a proposed new law that would require Web
publishers to obtain parental consent before collecting personal
information from children → legislation to protect children’s
privacy on-line
Specification: the White House’s top drug official → Gen. Barry
R. McCaffrey, the White House’s top drug official

6. Reordering. In reordering, the order of extracted sentences is changed
with respect to the original. For instance, the ending sentence of an
article may be placed at the beginning of an abstract.

Not all revision operations are listed here, because some operations are used infre-
quently. Note that multiple revision operations are often involved in order to produce
a single summary sentence.

In human-written abstracts, some sentences are not based on cut and paste but
are written from scratch. The main criterion we used to distinguish a sentence that
was cut and pasted from a sentence written from scratch was whether more than
half the words in a summary sentence were composed of phrases borrowed from
the original document, in which case the sentence was considered to have been
constructed by cut and paste; otherwise, it was considered to have been written
from scratch.2

3. Using a Hidden Markov Model for Decomposition

To answer the three questions of the decomposition problem is difficult. Because the
phrases that are borrowed from the original document can be at any granularity,
determining phrase boundaries is not easy. Determining the origin of a phrase is
also difficult, since the phrase may occur multiple times in the document in slightly
different forms. Moreover, multiple revision operations may have been performed on
the reused text. The resulting summary sentence can therefore differ significantly from
the source document sentences from which it has been developed. All these factors
complicate the decomposition problem.

We propose a hidden Markov model (HMM) (Baum 1972) solution to the decom-
position problem. The model has three steps. First, we formulate the decomposition
problem as an equivalent problem; that is, for each word in a summary sentence, we
identify a document position as its likely source. This step is important, since only af-
ter this transformation can we apply the HMM to solve the problem. Second, we build
the HMM on a set of general heuristic rules observed from the text-reusing practice of
humans. Although this is unconventional in applications that use HMMs, we believe
it is appropriate in our particular application. Evaluations show that this unconven-
tional HMM is effective for decomposition. In the last step, a dynamic programming
technique, the Viterbi algorithm (Viterbi 1967), is used to find the most likely docu-
ment position for each word in a summary sentence and the best decomposition for
the sentence.

2 It is, of course, possible that a summary sentence has not been constructed by cut and paste even if
more than half of the words in the sentence are from the original document.

531

Jing Decomposing Human-Written Summaries

3.1 Formulating the Problem
We first mathematically formulate the summary sentence decomposition problem. An
input summary sentence can be represented as a word sequence: (I1, . . . , IN), where I1
is the first word of the sentence and IN is the last word. The position of a word in a
document can be uniquely represented by the sentence position and the word position
within the sentence: (SNUM, WNUM). For example, (4, 8) uniquely refers to the eighth
word in the fourth sentence. Multiple occurrences of a word in the document can be
represented by a set of word positions: {(SNUM1, WNUM1), . . . , (SNUMm, WNUMm)}.
Using the above notation, we formulate the decomposition problem as follows: Given a
word sequence (I1, . . . , IN) and the positions {(SNUM1, WNUM1), . . . , (SNUMM,
WNUMM)} for each word in the sequence, determine the most likely document posi-
tion for each word.

Through this formulation, we transform the difficult tasks of identifying phrase
boundaries and determining phrase origins into the problem of finding a most likely
document position for each word. As shown in Figure 1, when a position has been
chosen for each word in the summary sequence, we obtain a sequence of positions.
For example, ((0,21), (2,40), (2,41), (0,31)) is our position sequence when the first occur-
rence of the same word in the document has been chosen for every summary word;
((0,26), (2,40), (2,41), (0,31)) is another position sequence. Every time a different po-
sition is chosen for a summary word, we obtain a different position sequence. The
word the in the sequence occurs 44 times in the document, communication occurs once,
subcommittee occurs twice, and of occurs 22 times. This four-word sequence therefore
has a total of 1,936 (44× 1× 2× 22) possible position sequences.3 Morphological anal-
ysis or stemming can be performed to associate morphologically related words, but
it is optional. In our experiments, applying stemming improved system performance
when the human-written summaries included many words that were morphological
variants of original-document words. Many human-written summaries in our exper-
iments, however, contained few cases of morphological transformation of words and
phrases borrowed from original documents, so stemming did not improve the perfor-
mance for these summaries.

Finding the most likely document position for each word is equivalent to finding
the most likely position sequence among all possible position sequences. For the ex-
ample in Figure 1, the most likely position sequence should be ((2,39), (2,40), (2,41),
(2,42)); that is, the fragment comes from document sentence 2 and its position within
the sentence is word number 39 to word number 42. How can we automatically find
this sequence, however, among 1,936 possible sequences?

3.2 The Hidden Markov Model
The exact document position from which a word in a summary comes depends on the
word positions surrounding it. Using the bigram model, we assume that the probability
of a word’s coming from a certain position in the document depends only on the word
directly before it in the sequence. Suppose Ii and Ii+1 are two adjacent words in a
summary sentence and Ii is before Ii+1. We use PROB(Ii+1 = (S2, W2) | Ii = (S1, W1)) to
represent the probability that Ii+1 comes from sentence number S2 and word number
W2 of the document when Ii comes from sentence number S1 and word number W1.

To decompose a summary sentence, we must consider how humans are likely
to generate it; we draw here on the revision operations discussed in section 2. Two

3 Given an N-word sequence (I1, . . . , IN), supposing Ii occurs Fi times in the document, for i = 1 · · ·N,
then the total number of possible position sequences is F1 × F2 × · · · × FN .

532

Computational Linguistics Volume 28, Number 4

the communication subcommittee of

(2,41)

...

(0,32)

(0,21)

(0,26)

...

(2,39)

...

(23,44)

(2,40)

...

(4,1)

 (0,31)

(1,10)

(2,30)

(2,42)

(23,43)

(4,16)

Figure 1
The sequences of positions in summary sentence decomposition.

general heuristic rules can be safely assumed: First, humans are more likely to cut
phrases than single, isolated words; second, humans are more likely to combine nearby
sentences into a single sentence than those far apart. These two rules guide us in the
decomposition process.

We translate the heuristic rules into the bigram probability PROB(Ii+1 = (S2, W2) |
Ii = (S1, W1)), where Ii, Ii+1 represent two adjacent words in the input summary
sentence (abbreviated henceforth as PROB(Ii+1 | Ii)). The values of PROB(Ii+1 | Ii) are
assigned as follows:

• If ((S1 = S2) and (W1 = W2 − 1)) (i.e., words in two adjacent positions in
the document), then PROB(Ii+1 | Ii) is assigned the maximal value P1.
For example, PROB((subcommittee = (2, 41) | communications = (2, 40)) in
Figure 1 will be assigned the maximal value. (Rule: Two adjacent words
in a summary are most likely to come from two adjacent words in the
document.)

• If ((S1 = S2) and (W1 < W2 − 1)), then PROB(Ii+1 | Ii) is assigned the
second-highest value P2. For example, PROB(of = (4, 16) | subcommittee =
(4, 1)) will be assigned a high probability. (Rule: Adjacent words in a
summary are highly likely to come from the same sentence in the
document, retaining their relative order, as in the case of sentence
reduction. This rule can be further refined by adding restrictions on
distance between words.)

• If ((S1 = S2) and (W1 > W2)), then PROB(Ii+1 | Ii) is assigned the
third-highest value P3. For example, PROB(of = (2, 30) | subcommittee =
(2, 41)). (Rule: Adjacent words in a summary can come from the same
sentence in the document but change their relative order. For example, a
subject can be moved from the end of the sentence to the front, as in
syntactic transformation.)

• If (S2 − CONST < S1 < S2), then PROB(Ii+1 | Ii) is assigned the
fourth-highest value P4. For example, PROB(of = (3, 5) | subcommittee =

533

Jing Decomposing Human-Written Summaries

(2, 41)). (Rule: Adjacent words in a summary can come from nearby
sentences in the document and retain their relative order, such
as in sentence combination. CONST is a small constant such
as 3 or 5.)

• If (S2 < S1 < S2 + CONST), then PROB(Ii+1 | Ii) is assigned the
fifth-highest value P5. For example, PROB(of = (1, 10) | subcommittee =
(2, 41)). (Rule: Adjacent words in a summary can come from nearby
sentences in the document but reverse their relative orders.)

• If (|S2 − S1| >= CONST), then PROB(Ii+1 | Ii) is assigned the smallest
value P6. For example, PROB(of = (23, 43) | subcommittee = (2, 41)). (Rule:
Adjacent words in a summary are not very likely to come from sentences
far apart.)

Figure 2 shows a graphical representation of the above rules for assigning bi-
gram probabilities. The nodes in the figure represent possible positions in the doc-
ument, and the edges output the probability of moving from one node to another.
These bigram probabilities are used to find the most likely position sequence in the
next step. Assigning values to P1–P6 is experimental. In our experiments, the max-
imal value is assigned 1 and others are usually assigned evenly decreasing values:
0.9, 0.8, and so on. These values, however, can be experimentally adjusted for dif-
ferent corpora. We decide the approximate optimal values of P1–P6 by testing dif-
ferent values for P1–P6 and choosing the values that give the best performance in
the tests.

Figure 2 is considered a very abstract representation of our HMM for decompo-
sition. Each word position in the figure represents a state in the HMM. For example,
(S, W) is a state, and (S, W + 1) is another state. Note that (S, W) and (S, W + 1) are
relative values; the S and W in the state (S, W) have different values based on the

(S,W) (S,W+1) (S,W+n)
(n>=1) (n>=2)

(S+i,W+j)

(S+i,W+j)
i>=CONST

(S−i,W+j)

(S−i,W+j)
i>=CONST

Sentence (S−CONST)

Sentence (S+CONST)

P1

P2

P3

P6

P6
0< i<CONST

0<i<CONST

P5

P4

(S,W−n)
Sentence S

Figure 2
Assigning transition probabilities in the HMM.

534

Computational Linguistics Volume 28, Number 4

particular word position under consideration. This relative model can be easily trans-
formed, however, into an absolute model. (S, W) can be replaced by every possible
word position in the document; transition probabilities between every possible pair of
positions can be assigned in the same way as in Figure 2. In section 3.6, we describe
how the abstract model can be transformed into the absolute model and give a formal
description of our HMM.

3.3 The Viterbi Algorithm
To find the most likely sequence, we must find a sequence of positions that maxi-
mizes the probability PROB(I1, . . . , IN). Using the bigram model, this probability can
be approximated as

PROB(I1, . . . , IN) =

N−1∏

i=0

PROB(Ii+1 | Ii).

Because PROB(Ii+1 | Ii) has been assigned as indicated earlier, we therefore have all
the information needed to solve the problem. We use the Viterbi algorithm (Viterbi
1967) to find the most likely sequence. For an N-word sequence, supposing each word
occurs M times in the document, the Viterbi algorithm is guaranteed to find the most
likely sequence using k × N × M2 steps for some constant k, compared to MN for the
brute force search algorithm.

We have slightly revised the Viterbi algorithm for our application. In the initial-
ization step, equal chance is assumed for each possible document position of the first
word in the sequence. In the iteration step, we take special measures to handle the
case when a summary word does not appear in the document (i.e., has an empty
position list). We mark the word as nonexistent in the original document and continue
the computation as if it did not appear in the sequence.

3.4 Postediting
After the phrases are identified, the program postedits to cancel mismatchings that
arise because the Viterbi algorithm assigns each word in the input sequence to a
position in the document, as long as the word appears at least once. For instance, in the
example of sentence combination given in section 2, the summary sentence combined
two reduced document sentences by adding the conjunction and. The word and was
inserted by the human writer, but the Viterbi algorithm assigned it to a document
position, since it occurred in the original document. The goal of the postedit step is to
annul such mismatchings.

The postedit step deals with two types of mismatchings: wrong assignment of
document positions for inserted stop words in a summary sentence and wrong as-
signment of document positions for isolated content words in a summary sentence. To
correct the first type of mismatching, if any document sentence contributes only stop
words for the summary, the matching is canceled, since the stop words are more likely
to have been inserted by humans rather than coming from the original document. This
is the case for the example just discussed. To correct the second type of mismatching,
if a document sentence provides only a single non–stop word, we also cancel such
matching, since humans rarely cut single words from the original text to generate a
summary sentence.

535

Jing Decomposing Human-Written Summaries

3.5 An Example
To demonstrate the program, we now present an example from beginning to end. The
following input sample summary sentence is also shown in Figure 3:

Arthur B. Sackler, vice president for law and public policy of Time Warner Inc.
and a member of the Direct Marketing Association, told the communications
subcommittee of the Senate Commerce Committee that legislation to protect
children’s privacy online could destroy the spontaneous nature that makes the
Internet unique.

We first indexed the document, listing for each word its possible positions in the
document.4 Stemming was not used in this example. Upon augmenting each summary
word with its possible document positions, we obtained the following input for the
Viterbi program:

arthur : 1,0
b : 1,1
sackler : 1,2 2,34 . . . 15,6
. . .
the : 0,21 0,26 . . . 23,44
internet : 0,27 1,39 . . . 18,16
unique : 0,28

This 48-word sentence has a total of 5.08×1027 possible position sequences. Using the
bigram probabilities as assigned in section 3.2, we ran the Viterbi algorithm to find the
most likely position sequence. After every word was assigned a most likely document
position, we marked the phrases in the sentence by conjoining words from adjacent
document positions.

Figure 3 shows the final result for the sample input summary sentence. The phrases
in the summary are tagged (FNUM:SNUM actual-text), where FNUM is the sequential
number of the phrase and SNUM is the number of the document sentence in which
the phrase originates. SNUM = −1 means that the phrase is not derived from the orig-
inal document. The borrowed phrases are tagged (FNUM actual-text) in the document
sentences.

In this example, the program correctly concluded that the summary sentence was
constructed by reusing the original text. It identified the four document sentences that
were combined into the summary sentence; it also correctly divided the summary
sentence into phrases, pinpointing the exact document origin of each. In this example,
the phrases that were borrowed from the document ranged from single words to long
clauses. Certain borrowed phrases were also syntactically transformed; despite these,
the program successfully decomposed the sentence.

The decomposition outputs such as shown in Figure 3 were then used for building
the training corpora for sentence reduction and sentence combination. The output
shown in Figure 3 was included in the corpus for sentence combination, since the
summary sentence was constructed by merging document sentences. If a summary
sentence was constructed by removing phrases from a single document sentence, then
it was included in the training corpus for sentence reduction.

4 The original document contained 25 sentences and 727 words in total.

536

Computational Linguistics Volume 28, Number 4

Summary Sentence:
(F0:S1 arthur b sackler vice president for law and public policy of time warner
inc) (F1:S-1 and) (F2:S0 a member of the direct marketing association told) (F3:S2
the communications subcommittee of the senate commerce committee) (F4:S-1 that
legislation) (F5:S1 to protect) (F6:S4 children’s) (F7:S4 privacy) (F8:S4 online) (F9:S0
could destroy the spontaneous nature that makes the internet unique)

Source Document Sentences:
Sentence 0: a proposed new law that would require web publishers to obtain parental
consent before collecting personal information from children (F9 could destroy the
spontaneous nature that makes the internet unique) (F2 a member of the direct
marketing association told) a senate panel thursday
Sentence 1: (F0 arthur b sackler vice president for law and public policy of time
warner inc) said the association supported efforts (F5 to protect) children online but
he urged lawmakers to find some middle ground that also allows for interactivity on
the internet
Sentence 2: for example a child’s e-mail address is necessary in order to respond to
inquiries such as updates on mark mcguire’s and sammy sosa’s home run figures
this year or updates of an online magazine sackler said in testimony to (F3 the
communications subcommittee of the senate commerce committee)
Sentence 4: the subcommittee is considering the (F6 children’s) (F8 online) (F7 pri-
vacy) protection act which was drafted on the recommendation of the federal trade
commission

Figure 3
A sample output of the summary sentence decomposition program (boldface text indicates
material that was cut from the original document and reused in the summary, and italic text in
the summary sentence indicates material that was added by the human writer).

3.6 Formal Description of Our Hidden Markov Model
We first illustrate how an absolute model can be created from the relative model
represented in Figure 2. For simplicity, suppose there are only two sentences in the
original document and each sentence has two words. From the relative model in
Figure 2, we can build an absolute model as shown in Figure 4.

In the absolute model, there are four states, (1,1), (1,2), (2,1), and (2,2), each cor-
responding to a word position. Each state has only one observation symbol (i.e., out-

(1, 2)(1, 1)

(2, 1) (2, 2)

Φ

Figure 4
Example of the absolute hidden Markov model.

537

Jing Decomposing Human-Written Summaries

put): the word in that position. Each state is interconnected with the other states in
the model. The state transition probabilities, which represent the probabilities of tran-
sitioning from one state to another state, can be assigned following the rules shown
in Figure 2. In this case, however, we need to normalize the values of {P1, P2, . . . , P6}
so that for each state the sum of the transition probabilities is one, which is a basic
requirement for an HMM. This normalization is needed in theory in order to conform
our relative model to a formal model, but in practice it is not needed in the decom-
position process, since it does not affect the final result. The initial state distribution
is uniform; that is, the initial state, labeled as Φ in Figure 4, has an equal chance to
reach any state in the model.

We give a formal description of our HMM for decomposition as follows. For
each original document, we can build an absolute model based on the relative model
in Figure 2. In the absolute model, each state corresponds to a word position, and
each word position corresponds to a state. The observation symbol set includes all
the words in the document, and the observation symbol probabilities are defined as
P(Wi | Pi) = 1, if word Wi is in position Pi, and P(Wi | Pi) = 0, if word Wi is
not in position Pi. The transition probabilities P(Pj | Pi) are defined as we described in
Figure 2, with every word position linked to every other word position, and state initial
probabilities are uniform as we mentioned. This Markov model is hidden because one
symbol sequence can correspond to many state sequences, meaning that many position
sequences can correspond to a word sequence, as shown in Figure 1. Generally, in
a hidden Markov model, one state sequence can also corrrespond to many symbol
sequences. Our HMM does not have this attribute.

4. Evaluations

Three experiments were performed to evaluate the decomposition module. In the first
experiment, we evaluated decomposition in a task called summary alignment. This
measured how successfully the decomposition program can align sentences in the
summary with document sentences that are semantically equivalent. In the second
experiment, we asked humans to judge whether the decomposition results were cor-
rect. Compared to the first experiment, this was a more direct evaluation, using a
larger collection of documents. The third experiment evaluated the portability of the
program.

The corpus used in the first experiment consisted of 10 documents from the Ziff-
Davis corpus, which contains articles related to computer products and is available
on TIPSTER discs from Linguistic Data Consortium (LDC) (Harman and Liberman
1993). The corpus used in the second experiment consisted of 50 documents related to
telecommunications issues. The corpus used in the third experiment consisted of legal
documents on court cases, provided by the Westlaw Group.

4.1 Summary Alignment
The goal of the summary alignment task was to find sentences in the document that
were semantically equivalent to the summary sentences. We used a small collection
of 10 documents, gathered by Marcu (1999). Marcu presented these 10 documents
together with their human-written summaries from the Ziff-Davis corpus to 14 human
judges. These human judges were instructed to extract sentences from the original
document that were semantically equivalent to the summary sentences. Sentences
selected by the majority of human judges were collected to build an extract (i.e.,
extraction-based summary) of the document. This resulting extract was used as the
gold standard in our evaluation. Note that this evaluation will be biased against the

538

Computational Linguistics Volume 28, Number 4

Table 1
Evaluation of decomposition program using the Ziff-Davis corpus.

Doc. No. Precision Recall F-Measure

ZF109-601-903 0.67 0.67 0.67
ZF109-685-555 0.75 1 0.86
ZF109-631-813 1 1 1
ZF109-712-593 0.86 0.55 0.67
ZF109-645-951 1 1 1
ZF109-714-915 0.56 0.64 0.6
ZF109-662-269 0.79 0.79 0.79
ZF109-715-629 0.67 0.67 0.67
ZF109-666-869 0.86 0.55 0.67
ZF109-754-223 1 1 1

Average 0.815 0.785 0.791

decomposition model, as Marcu’s semantic equivalence is a broader concept than our
cut-and-paste equivalence.

Decomposition provides a list of source document sentences for each summary
sentence, as shown in Figure 3. We can build an automatic extract for the document
by selecting all the source document sentences identified by the decomposition pro-
gram. We compared this automatic extract with the gold-standard extract. The pro-
gram achieved an average 81.5% precision, 78.5% recall, and 79.1% F-measure for 10
documents. By comparison, the average performance of 14 human judges was 88.8%
precision, 84.4% recall, and 85.7% F-measure. Detailed results for each document are
shown in Table 1. Precision, recall, and F-measure are computed as follows:

Precision =
of sentences in the automatic extract and in the gold-standard extract

total # of sentences in the automatic extract

Recall =
of sentences in the automatic extract and in the gold-standard extract

total # of sentences in the gold-standard extract

F-measure =
2 × Recall × Precision

Recall + Precision

Further analysis indicates two types of errors made by the program. The first is
that the program failed to find semantically equivalent sentences with very different
wordings. For example, it did not find the correspondence between the summary
sentence Running Higgins is much easier than installing it and the document sentence
The program is very easy to use, although the installation procedure is somewhat complex. This
is not really an “error,” since the program is not designed to find such paraphrases.
For decomposition purposes, the program needs only to indicate that the summary
sentence is not produced by cutting and pasting text from the original document. The
program correctly indicated this by returning no matching sentence.

The second problem is that the program may identify a nonrelevant document
sentence as relevant if it contains some words common to the summary sentence.
This typically occurs when a summary sentence is not constructed by cutting and
pasting text from the document but shares words with certain document sentences.
For example, the decomposition program mistakenly linked the summary sentence
The program is very easy to use, although the installation procedure is somewhat complex with

539

Jing Decomposing Human-Written Summaries

the document sentence All you need to decide during the easy installation is where you want
to put the Higgins files and associated directories; this must be a directory available to all e-
mail users, because they had a number of words in common, including the, is, easy,
to, and installation. Our postediting steps are designed to cancel such false matchings,
although we cannot remove them completely.

It is worth noting that the extract based on human judgments, considered the gold
standard in this evaluation, is not perfect. For example, two document sentences may
express the same information (i.e., they are semantic paraphrases), and all human sub-
jects may consider this information important enough to be in the summary, but half
of the subjects selected one sentence and half selected the other; thus, both sentences
will be included in the extract although they are semantic paraphrases. Precisely this
happened in the extract of document ZF109-601-903. The document sentence This group
productivity package includes e-mail, group scheduling and alerting, keyword cross-reference fil-
ing, to-do lists, and expense reporting and the document sentence At $695 for 8 users, this
integrated software package combines LAN-based e-mail with a variety of personal information
management functions, including group scheduling, personal calendars, to-do lists, expense re-
ports, and a cross-referenced key-word database were both included in the extract, although
they contain very similar information. The program picked up only the second doc-
ument sentence, yet this correct decision was penalized in the evaluation because of
the mistake in the gold standard.

The program won perfect scores for 3 out of 10 documents. We checked the three
summaries and found that their texts were largely produced by cut and paste, com-
pared to other summaries with sentences written completely from scratch by humans.
This indicates that when only the decomposition task is considered, the algorithm
performs very well.

4.2 Human Judgments of Decomposition Results
Since the first experiment did not directly assess the program’s performance for the
decomposition task, we conducted another experiment to evaluate the correctness of
the decomposition results. First, we selected 50 summaries from a telecommunications
corpus and ran the decomposition program.

A human subject was asked to judge whether the decomposition results were
correct. A result was considered correct when all three questions posed in the decom-
position problem were correctly answered. As stated in section 1, the decomposition
program needs to answer the following three questions: (1) Is a summary sentence
constructed by reusing the text from the original document? (2) If so, what phrases
in the sentence come from the original document? and (3) From where in the doc-
ument do the phrases come? The 50 summaries contained a total of 305 sentences.
Eighteen (6.2%) sentences were wrongly decomposed, for an accuracy rate of 93.8%.
Most errors occurred when a summary sentence was not constructed by cutting and
pasting but contained many overlapping words with certain sentences in the docu-
ment. The accuracy rate here was much higher than the precision and recall results in
the first experiment. An important factor here is that we did not require the program
to find semantically equivalent document sentence(s) if a summary sentence used very
different wordings.

4.3 Portability
In the third and final evaluation of decomposition, we tested the program on legal
documents in a joint experiment with the Westlaw Group, which provides lawyers
with court case documents. Such documents start with a “synopsis” of the case, writ-
ten by attorneys, followed by “headnotes,” which are points of law also written by

540

Computational Linguistics Volume 28, Number 4

HEADNOTE:
(F0:S0 A motion for issuance of a peremptory writ) (F1:S-1 of mandamus) (F2:S0
notwithstanding) (F3:S0 the return) (F4:S1 operates as an admission by relator of
truth of facts well pleaded), (F5:S1 but claims that in law the return presents no
sufficient) (F6:S-1 ground) (F7:S1 why relief sought) (F8:S1 should not be granted).

OPINION:
Sentence 0: As to the effect to be given (F0 the motion for the issuance of the peremp-
tory writ) (F3 the return) of the respondents (F2 notwithstanding), it is well to state
at the outset that under our decided cases such a motion stands as the equivalent of
a demurrer to a pleading in a law action.
Sentence 1: It (F4 operates as an admission by the relator of the truth of the facts
well pleaded) by the respondent (F5 but claims that in law the return presents no
sufficient) reason (F7 why the relief sought) in the alternative writ (F8 should not
be granted).

Figure 5
A sample output of legal document decomposition (boldface text indicates material that was
cut from the original document and reused in the summary, and italic text in the summary
sentence indicates material that was added by the human writer).

attorneys and summarized from the discussions. The last part is the discussion, called
“opinion.”

The task here was to match each headnote entry with the corresponding text in
the opinion. When lawyers study a legal case document, they can see not only the
important points of law, but also where these points are discussed in the opinion. We
applied our decomposition program to this task. We did not adjust our HMM param-
eters. A sample decomposition result is shown in Figure 5. Similar to the notation
used in Figure 3, the phrases in the headnote are tagged (FNUM:SNUM actual-text),
where FNUM is the sequential number of the phrase and SNUM is the number of the
document sentence where the phrase comes from. SNUM = −1 means that the phrase
did not come from the original document. The borrowed phrases are tagged (FNUM
actual-text) in the opinion. Note that in this example, we ignored the difference of the
determiners (“a,” “the,” etc.) in the phrases, so the summary phrase “a motion for is-
suance of a peremptory writ” was considered to originate from the document phrase
“the motion for the issuance of the peremptory writ,” although the two phrases were
not identical.

We received 11 headnotes from Westlaw and examined the decomposition results
for all of them. The program found the correct source sentences and identified the
correct origins of the phrases for every headnote.

In summary, we performed three experiments in three different domains—compu-
ter, telecommunications news, and legal—and in each case achieved good results, with
no change or minimal parameter adjustment to the HMM. This demonstrates that our
proposed decomposition approach is portable. The reason for this portability may be
that the heuristic rules that we used to build the HMM are indeed general and remain
true for different humans and for articles from different domains.

5. Applications of Decomposition Results

5.1 Providing Training and Testing Corpora for Summarization
We have used the decomposition results in our development of a text generation
system for domain-independent summarization. The generation system mimics two
revision operations presented in section 2: sentence reduction and sentence combina-
tion. The decomposition program is used to build corpora for training and evaluating

541

Jing Decomposing Human-Written Summaries

the sentence reduction and combination modules. The corpora contained examples as
shown in Figure 3. Details of the summarization system can be found in Jing (2001).

5.2 Corpus Analysis
We performed a corpus analysis using the decomposition program. We automatically
analyzed 300 human-written summaries of news articles on telecommunications, pro-
vided by the Benton Foundation. The number of sentences in each summary ranged
from 2 to 21; the corpus contained a total of 1,642 summary sentences. The results
indicated that 315 summary sentences (19%) did not have matching sentences in the
document: They were written from scratch by humans rather than by cutting and
pasting phrases from the original text. Of the summary sentences, 686 (42%) matched
a single sentence in the document. These sentences were constructed by sentence re-
duction, sometimes together with other operations such as lexical paraphrasing and
syntactic transformation. In addition, 592 sentences (36%) matched two or three sen-
tences in the document and 49 sentences (3%) matched more than three sentences in
the document. These sentences were constructed by sentence combination, often to-
gether with other operations, especially sentence reduction, since the sentences were
usually reduced before they were combined. These results suggested that a significant
portion (81%) of summary sentences produced by humans were based on cutting and
pasting the original text. Sentence reduction was applied in at least 42% of the cases.
Sentence combination was applied in 39% of the cases.

5.3 Improving User Interfaces
The decomposition result can be used in applications other than summarization. For
example, in the experiment we performed jointly with Westlaw (see section 4.3), we
found that linking summaries and original documents can potentially improve user
interfaces, helping users to easily browse and find relations between portions of the
text.

6. Related Work

Researchers have previously tried to align summary sentences with sentences in a
document, mostly by manual effort (Edmundson 1969; Kupiec, Pedersen, and Chen
1995; Teufel and Moens 1997). Given the cost of this manual annotation process, only
small collections of text have been annotated. Decomposition provides a means of
performing this alignment automatically, building large corpora for summarization
research.

Marcu (1999) presented an approach for aligning summary sentences with seman-
tically equivalent sentences in a document. It adopted an information retrieval based
approach, coupled with discourse processing. Although our decomposition also aims
to link summaries with the original documents, major differences exist between the
two approaches. While Marcu’s algorithm operates at the sentence or clause level, our
decomposition program deals with phrases at various granularities (anything from a
word to a complicated phrase to a complete sentence). Furthermore, the approaches
used by the two systems are distinct. Marcu’s approach first breaks sentences into
clauses, then uses rhetorical structure to decide which clauses should be considered,
and finally employs an IR-based similarity measure to decide which clauses in the doc-
ument are similar to those in human-written abstracts. Our HMM solution first builds
the HMM, then uses a dynamic programming technique to find the optimal answer.
Marcu reported a performance of 77.45%, 80.06%, and 78.15% for precision, recall, and
F-measure, respectively, when the system was evaluated at the sentence level in the

542

Computational Linguistics Volume 28, Number 4

summary alignment task described in section 3.1. When tested on the same set of test
documents and for the same task, our system averaged 81.5% precision, 78.5% recall,
and 79.1% F-measure, as shown in Table 1.

We transformed the decomposition problem into a problem of finding the most
likely document position for each word in the summary, which is, in some sense, simi-
lar to the problem of aligning parallel bilingual corpora (Brown, Lai, and Mercer 1991;
Gale and Church 1991). Whereas Brown, Lai, and Mercer and Gale and Church aligned
sentences in a parallel bilingual corpus, we aligned phrases in a summary with phrases
in a document. Brown, Lai, and Mercer (1991) also used an HMM in their solution
for bilingual corpora alignment. Their model and our model, however, differ greatly:
Their model used sentence length as a feature, whereas ours used word position as
a feature; they used an aligned training corpus to compute transition probabilities,
whereas we did not use any annotated training data.

7. Conclusions

We defined the problem of decomposing human-written summaries and proposed a
hidden Markov model solution to the problem. The decomposition program can auto-
matically determine whether a summary sentence is constructed by reusing text from
the original document; it can accurately recognize the reused phrases in a summary
sentence despite their different granularities; it can also pinpoint the exact origin in
the document for a phrase. The algorithm is fast and straightforward. It does not
need other tools such as a tagger or parser as preprocessors. It does not have complex
processing steps. The evaluations show that the program performs very well for the
decomposition task.

Acknowledgments
The material in this article is based upon
work supported by the National Science
Foundation under Grant No. IRI 96-19124
and IRI 96-18797. Any opinions, findings,
and conclusions or recommendations
expressed in this material are those of the
author and do not necessarily reflect the
views of the National Science Foundation.

References
Baum, Leonard E. 1972. An inequality and

associated maximization technique in
statistical estimation of probabilistic
functions of a Markov process.
Inequalities, 3:1–8.

Brown, Peter F., Jennifer C. Lai, and Robert
L. Mercer. 1991. Aligning sentences in
parallel corpora. In Proceedings of the 29th
Annual Meeting of the Association for
Computational Linguistics, pages 169–176,
Berkeley, June.

Edmundson, H. P. 1969. New methods in
automatic abstracting. Journal of the ACM,

16(2):264–285.
Endres-Niggemeyer, Brigitte, Kai Haseloh,

Jens Müller, Simone Peist, Irene Santini
de Sigel, Alexander Sigel, Elisabeth
Wansorra, Jan Wheeler, and Brünja
Wollny. 1998. Summarizing Information.
Springer, Berlin.

Gale, William A. and Kenneth W. Church.
1991. A program for aligning sentences in
parallel corpora. In Proceedings of the 29th
Annual Meeting of the Association for
Computational Linguistics, pages 177–184,
Berkeley, June.

Harman, Donna and Mark Liberman. 1993.
TIPSTER Complete. Linguistic Data
Consortium, University of Pennsylvania.

Jing, Hongyan. 2001. Cut-and-Paste Text
Summarization. Ph.D. thesis, Department
of Computer Science, Columbia
University, New York.

Kupiec, Julian, Jan Pedersen, and Francine
Chen. 1995. A trainable document
summarizer. In Proceedings of the 18th
International Conference on Research and
Development in Information Retrieval,
pages 68–73, Seattle.

543

Jing Decomposing Human-Written Summaries

Marcu, Daniel. 1999. The automatic
construction of large-scale corpora for
summarization research. In Proceedings of
the 22nd International Conference on Research
and Development and Information Retrieval,
pages 137–144, University of California,
Berkeley, August.

Teufel, Simone and Mark Moens. 1997.
Sentence extraction as a classification

task. In Proceedings of the ACL/EACL’97
Workshop on Intelligent Scalable Text
Summarization, pages 58–65, Madrid.

Viterbi, Andrew J. 1967. Error bounds for
convolution codes and an asymptotically
optimal decoding algorithm. IEEE
Transactions on Information Theory,
13:260–269.

